Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-11T11:54:17.663Z Has data issue: false hasContentIssue false

Morphology, Phonon Confinement and Properties of a-Si:H Films

Published online by Cambridge University Press:  17 March 2011

Valeri Ligatchev*
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore639798
Get access

Abstract

It is usually assumed that optical and electrical properties of amorphous semiconductors are determined by the short-range-order (SRO) parameters of atomic structure. The SRO parameters behavior is considered here as governed by morphology geometrical parameters (MGP) variations. Generalized Skettrup model is developed for a quantitative description of the MGP influence on the density of electron states distribution N(E). Common N(E) relation for the power, exponential and the ‘defect’ regions of the dependence is derived both for adiabatic (optical) and non-adiabatic (thermal) electron excitation processes. The simulated (by the N(E) convolution) spectral dependence of the opti-cal absorption coefficient contains the Tauc, Urbach and the ‘defect’ parts. The optical gap and the Urbach tail slope energies are typical for the ‘device quality’ a-Si:H films at the average morphology geometrical parameters values of order of 1 μm. Nearly linear the optical gap versus the Urbach tail slope energies dependence is obtained at the mor-phology geometrical parameters and temperature changes. Good agreement of experi-mental and the simulation results is achieved for a-Si:H films, prepared both by the RF sputtering and by the silane decomposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mott, N.F., Davis, E.A., Electron processes in non-crystalline materials, (Clarendon Press 1979), Oxford, 368 p.Google Scholar
2. Paul, W., Connel, G.A.N., Temkin, R., J. Adv. Phys, 22, 529 (1973).Google Scholar
3. Postol, T.A., Falco, Ch. M., Kampwirth, R.T., Schuller, K., Phys. Rev. Lett., 45, 648 (1980).Google Scholar
4. Paul, W., Proc. IX IVC-V ICSS, Madrid, 335 (1983).Google Scholar
5. Le-Comber, P.G., Jones, I.D., Spear, W.E., Philos. Mag., B 53, L1 (1986).Google Scholar
6. Skettrup, T., Phys. Rev. B, 18, 2622 (1978).Google Scholar
7. Scholten, A.J., Akimov, A.V., Dijkhuis, J.I., Phys. Rev. B., 47, 13910 (1993).Google Scholar
8. Scholten, A.J., Dijkhuis, J.I., Phys. Rev. B., 53, 3837 (1996).Google Scholar
9. Gransdorff, P., Prigogine, I., Thermodinamics: Theory of Structure, Stability and Fluctuations (Addison-Wiley 1979), London, p. 245.Google Scholar
10.Y., , Bar-Yam, Adler, D., Joannopoulos, J.D., Phys. Rev. Lett., 57, 467 (1986).Google Scholar
11. Stutzmann, M., Philos. Mag. B, 56, 63 (1987).Google Scholar
12. Smith, Z.E., and Wagner, S., Phys. Rev. Lett., 59, 688 (1987).10.1103/PhysRevLett.59.688Google Scholar
13. Street, R.A., and Winer, H., Phys. Rev. B., 40, 6236 (1989).10.1103/PhysRevB.40.6236Google Scholar
14. Tauc, J., Grigorovici, P., Vanku, A., Phys. Stat. Sol., 15, 627 (1966).Google Scholar
15. Cody, G.D., Tiedje, B., Abeles, B. et al. , Phys. Rev. Lett., 47, 1480, (1981).Google Scholar
16. Ligachov, V.A., Proc. 35th Int. Coll. TH Ilmenau, Ilmenau, DDR, Pt. 4, 56, (1990).Google Scholar
17.H., , Suleman, Filikov, V.A., Vasil’eva, N.D., Ligachev, V.A., Techn. Phys., 39, 765 (1994).Google Scholar
18. Cody, G.D., The optical absorption edge of a-Si:H, Semiconductors and semimetals 21B / Eds. Pankove, J.I., (Academic Press 1984), 438 p.Google Scholar
19.B.I., , Shklovskii, Efros, A.L., Sov. Phys. Semicon. 4, 247 (1970).Google Scholar
20. Overhof, H., Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors, Springer Tracts in Modern Physics, 116, (Springer 1989), 174 p.Google Scholar