Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T11:36:46.104Z Has data issue: false hasContentIssue false

Morphological and Compositional Instabilities of Strained and Unstrained Alloy Layers

Published online by Cambridge University Press:  10 February 2011

F. Glas
Affiliation:
France Telecom, CNET, Lab. Concepts et Dispositifs pour la Photonique, CNRS URA 250, 196 av. Henri Ravéra, BP 107, 92225 Bagneux Cedex, FRANCE, frank.glas@cnet.francetelecom.fr
G. Patriarche
Affiliation:
France Telecom, CNET, Lab. Concepts et Dispositifs pour la Photonique, CNRS URA 250, 196 av. Henri Ravéra, BP 107, 92225 Bagneux Cedex, FRANCE, frank.glas@cnet.francetelecom.fr
Get access

Abstract

We study several aspects of the instability of epitaxial layers with respect to composition modulations and surface non-planarities. After recalling previous experimental and theoretical results, we first give a detailed calculation of the elastic energy of a lattice-matched layer where both these phenomena occur. As in the lattice-mismatched case, the elastic strain fields of the modulation and the undulation interact, but the critical temperature under which composition modulations become favorable remains the same as in the planar layers. However, when a composition modulation is present, the system is unstable to a specific class of surface undulations. We then discuss TEM experiments investigating systematically the morphological instability in superlattices containing either tensile or compressive layers. Growth on surfaces variously disoriented with respect to (001) allows us to study two debated points: Does the instability develop by bunching of steps already present on the substrate or through nucleation of new steps? What is the nature of the asymmetry between tensile and compressive layers? We show that in the compressive layers, the surface non-planarity develops by bunching of a large fraction of the original substrate steps, whereas for layers under tension facets appear.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[.Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
[.Ipatova, I.P., Malyshkin, V.G., and Schukin, V.A., J. Appl. Phys. 74, 7198 (1993).Google Scholar
[.Glas, F., Phys. Rev. B 55, 11277 (1997).Google Scholar
[.Asaro, R.J. and Tiller, W.A., Metall. Trans. 3, 1789 (1972).Google Scholar
[.Grinfel'd, M.A., Sov. Phys. Dokl. 31, 831 (1986).Google Scholar
[.Guyer, J.E. and Voorhees, P.W., Phys. Rev. B 54, 11710 (1996).Google Scholar
[.Léonard, F. and Desai, R.C., Phys. Rev. B 57, 4805 (1998).Google Scholar
[.Ponchet, A., Rocher, A., Emery, J.Y., Starck, C., and Goldstein, L., J. Appl. Phys. 74, 3778 (1993).Google Scholar
[.Patriarche, G., Ougazzaden, A., and Glas, F., Appl. Phys. Lett. 69, 2279 (1996).Google Scholar
[0.Okada, T., Weatherly, G.C., and McComb, D.W., J. Appl. Phys. 81, 2185 (1997).Google Scholar
[1.Glas, F., in Microscopy of Semiconducting Materials 1993, edited by Cullis, A.G., Staton-Bevan, A.E., and Hutchison, J.L. (Inst. Phys. Conf. Ser. 134, Bristol, 1993), p. 269278.Google Scholar
[2.Peiró, F., Comet, A., Morante, J.R., Beck, M., and Py, M.A., J. Appl. Phys. 83, 7537 (1998).Google Scholar
[3.Guyer, J.E. and Voorhees, P.W., J. Cryst. Growth 187, 150 (1998).Google Scholar
[4.Venezuela, P. and Tersoff, J., Phys. Rev. B 58, 10871 (1998).Google Scholar
[5.Glas, F., J. Appl. Phys. 70, 3556 (1991).Google Scholar
[6.Léonard, F. and Desai, R.C., Phys. Rev. B 55, 9990 (1997).Google Scholar
[7.Tersoff, J., Phang, Y.H., Zhang, Z., and Lagally, M.G., Phys. Rev. Lett. 75, 2730 (1995)Google Scholar
[8.Xie, Y.H., Gilmer, G.H., Roland, C., Silverman, P.J., Buratto, S.K., Cheng, J.Y., Fitzgerald, E.A., Kortan, A.R., Schuppler, S., Marcus, M.A., and Citrin, P.H., Phys. Rev. Lett. 73, 3006 (1994).Google Scholar
[9.Ponchet, A., Corre, A. Le, Godefroy, A., Salatin, S., and Poudoulec, A., J. Cryst. Growth 153, 71 (1995).Google Scholar
[0.Barvosa-Carter, W., Aziz, M.J., Gray, L.J., and Kaplan, T., Phys. Rev. Lett. 81, 1445 (1998).Google Scholar