Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T14:27:19.106Z Has data issue: false hasContentIssue false

A Monte-Carlo Study of B2 Ordering and Precipitation on a Bcc Lattice

Published online by Cambridge University Press:  21 February 2011

M. Athènes
Affiliation:
SRMP/CEREM, CE Saclay, 91191 Gif-sur-Yvette, France.
P. Bellon
Affiliation:
SRMP/CEREM, CE Saclay, 91191 Gif-sur-Yvette, France.
G. Martin
Affiliation:
SRMP/CEREM, CE Saclay, 91191 Gif-sur-Yvette, France.
F. Haider
Affiliation:
University of Augsburg, D86135 Augsburg, Germany.
Get access

Abstract

Atomistic Monte-Carlo simulations of precipitation and B2 ordering in a binary alloy on a BCC lattice via vacancy mechanism are presented. Evolution of simulated patterns is in good agreement with the experimentally observed morphologies. Moreover, it is observed that the very early stages of ordering are strongly dependent on atomic mobility parameters. Depending on the relative exchange frequency of vacancies with A and B atoms, two extreme regimes oiordering are identified, leading either to localized or delocalized ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Allen, S. M. and Cahn, J. W., Acta Met. 24 425 (1976)Google Scholar
2 Soffa, W. A. and Laughlin, D. E., in Solid-Solid transformations, Trans-AIME Pittsburgh, 159 (1981).Google Scholar
3 Khachaturyan, A. G., Lindsey, T. F. and Morris, J. W. Jr., Metall. Trans. A 19A, 249 (1988).Google Scholar
4 Matsumura, S., Oyama, H. and Egushi, T., Oki, K., Materials Trans., JIM 30, No. 9 (1989) p. 695.Google Scholar
5 Allen, S. M. and Cahn, J. W., Acta Met. 23 1017 (1975).Google Scholar
6 Chen, L-Q, Khachaturyan, A. G., Acta Met. 39, 2533 (1991).Google Scholar
7 Dobretsov, V. Y., Martin, G., Soisson, F. and Vaks, V. G., EuroPhys. Lett. 31, 417 (1995).Google Scholar
8 Abinandanan, T., Haider, F. and Martin, G., in Non linear Phenonena in Materials Science III, Solid State Phenomena vol. 42–43 (Edited by Ananthakrishna, G., Kubin, L.P., Martin, G.) Scitec Publications (1994), p. 87.Google Scholar
9 Ackermann, H., Inden, G. and Kikuchi, R., Acta Met. 37, 1 (1989).Google Scholar
10 Wagner, R., Kampmann, R., in Materials Science and Technology, (edited by Cahn, R. W., Haasen, P., Kramer, E.J.) vol. 5, p. 213, VCH, (1991)Google Scholar
11 Beeler, J. R., Phys. Rev., 138, 1259 (1965).Google Scholar
12 Stauffer, D. and Aharony, A., Introduction to Percolation Theory, (Taylor& Francis, London, 17 (1994).Google Scholar
13 Schaefer, H.-E., Wurschum, R., Sob, M., Zak, T., Yu, W. Z., Eckert, W. and Banhart, F., Phys. Rev. B 41, 11869 (1990)Google Scholar
14 Larikov, L. N., Geichenko, V.V., and Fal'chenko, V. M., in Diffusion Processes in Ordered Alloys, Oxonian, New Delhi, (1981)Google Scholar