Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T09:21:52.609Z Has data issue: false hasContentIssue false

Monte Carlo Studies for Strong Correlations in Hubbard-Type Models

Published online by Cambridge University Press:  10 February 2011

E. S. Heeb*
Affiliation:
Institute for Theoretical Physics, ETH Zürich, CH-8093 Zürich, SWITZERLAND
Get access

Abstract

The tight-binding model with repulsive Hubbard interactions represents an ideal prototype for the study of strong correlations. While exact numerical methods have been used with some success, they are typically limited by the size of the clusters that can be investigated or by the temperatures that can be reached. Variational methods, on the other hand, often require considerable advance knowledge of ground-state properties. The method presented here alleviates this problem by augmenting the variational approach with a scheme similar to Lanczos iterations thus bridging the gap between exact diagonalization and variational approaches. For the t-J model, the low-energy effective Hamiltonian of the Hubbard model, material properties like broken translational invariance or superconducting correlations are then investigated and a region of stability of a superconducting phase is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubbard, J., Proc. Roy. Soc. (London), Ser. A 276, 238 (1963).Google Scholar
Hubbard, J., Proc. Roy. Soc. (London), Ser. A 281, 401 (1964).Google Scholar
2. Lieb, E. H. and Wu, F. Y., Phys. Lett. 20, 1445 (1968).Google Scholar
3. Sólyom, J., Adv. Phys. 28, 201 (1979).Google Scholar
4. Yokoyama, H. and Shiba, H., J. Phys. Soc. Japan 56, 3570 (1987).Google Scholar
Gros, C., Ann. Phys. (N.Y.) 189, 53 (1989) and references therein.Google Scholar
5. Li, Q. P., Koltenbah, B. E. C., and Joynt, R., Phys. Rev. B 48, 437 (1993), and references therein.Google Scholar
6. Ceperley, D., Chester, G. V., and Kalos, M. H., Phys. Rev. B 16, 3081 (1977).Google Scholar
7. Heeb, E. S. and Rice, T. M., Z. Phys. B 90, 73 (1993).Google Scholar
8. Zhang, F. C. and Rice, T. M., Phys. Rev. B 37, 3759 (1988).Google Scholar
9. Dagotto, E., Rev. Mod. Phys. 66, 763 (1994).Google Scholar
10. Dagotto, E. and Riera, J., Phys. Rev. Lett. 70, 682 (1993).Google Scholar
11. Heeb, E. S. and Rice, T. M., Europhys. Lett. 27, 673 (1994).Google Scholar
12. Emery, V. J., Kivelson, S. A., and Lin, H. Q., Phys. Rev. Lett. 64, 475 (1990).Google Scholar
Putikka, W. O., Luchini, M. U., and Rice, T. M., Phys. Rev. Lett. 68, 538 (1992).Google Scholar
13. Shih, C. T., Chen, Y. C., and Lee, T. K., preprint (cond-mat/9705156).Google Scholar
Kohno, M., Phys. Rev. B 55, 1435 (1997).Google Scholar
14. Hellberg, C. S. and Manousakis, E., Phys. Rev. Lett 78, 4609 (1997).Google Scholar
15. Chen, Y. C. and Lee, T. K., Phys. Rev. B 51, 6723 (1995).Google Scholar
16. Yokoyama, H. and Ogata, M., preprint (cond-mat/9607050).Google Scholar