Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T02:14:39.111Z Has data issue: false hasContentIssue false

Monosized Aggregates - A New Model

Published online by Cambridge University Press:  10 February 2011

Mani Gopal*
Affiliation:
Department of Materials Science, University of California, Berkeley, CA 94720 and Center for Advanced Materials, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

For applications requiring colloidal particles, it is desirable that they be monosized to better control the structure and the properties. In a number of systems, the monosized particles come together to form aggregates that are also monosized. A model is presented here to explain the formation of these monosized aggregates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sugimoto, T., Adv. Colloid Interface Sci., 28, 65 (1987)Google Scholar
2. LaMer, V. K. and Dinegar, R., J. Am. Chem. Soc., 72, 4847 (1950)Google Scholar
3. Matijevic, E.. Acc. Chem. Res., 14, 22 (1981)Google Scholar
4. Chow, M. K. and Zukoski, C. F., J. Colloid Interface Sci., 165, 97 (1994)Google Scholar
5. Edelson, L. H. and Glaeser, A. M., J. Am. Ceram. Soc., 71 (4), 225 (1988)Google Scholar
6. Bailey, J. K. and Mecartney, M. L. in Better ceramics through chemistry IV, edited by Zelinski, B. J. J. (Mater. Res. Soc. Symp. Proc., 180, Pittsburgh, PA, 1990) pp. 153158 Google Scholar
7. Ramsden, J. J., Surface Science, 156, 1027 (1985)Google Scholar
8. Celikkaya, A. and Akinc, M., J. Am. Ceram. Soc., 73 (8), 2360 (1990)Google Scholar
9. Hsu, W. P., Ronnquist, L. and Matijevic, E., Langmuir, 4, 31 (1988)Google Scholar
10. Weitz, D. A. and Oliveria, M., Phys. Rev. Lett., 52(16), 1433 (1984)Google Scholar
11. Look, J. L. and Zukoski, C. F., J. Am. Ceram. Soc., 78 (1), 21 (1995)Google Scholar
12. Derjaguin, B. V. and Landau, L. D., Acta Physicochim. URSS, 14, 633 (1940)Google Scholar
13. Verwey, E. J. W. and Overbeek, J. Th. G., Theory of the Stability of Lyophobic Colloids (Elsevier Publishers, Amsterdam, 1948)Google Scholar
14. Horn, R. G., J. Am. Ceram Soc., 73 (5), 1117 (1990)Google Scholar
15. Tadros, Th. F., Colloids and Surfaces, 18, 137 (1986)Google Scholar
16. Kittel, C., Introduction to Solid State Physics, 6th ed. (John Wiley and Sons, 1986)Google Scholar
17. Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, 1992)Google Scholar
18. Celikkaya, A. and Akinc, M., J. Am. Ceram. Soc., 73 (8), 2360 (1990)Google Scholar
19. Gopal, M., To be publishedGoogle Scholar
20. Adamson, A., Physical Chemistry of Surfaces, 5th ed. (John Wiley, 1990)Google Scholar
21. Look, J. L. and Zukoski, C. F., J. Am. Ceram. Soc., 75 (6), 1587 (1992)Google Scholar
22. Onoda, G. Y. and Toner, J., J. Amer. Ceram. Soc., 69 (11), C278 (1986)Google Scholar