Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T12:44:24.703Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of a Nuclear Waste Glass Matrix With Plutonium

Published online by Cambridge University Press:  10 February 2011

C. Meis
Affiliation:
DCC/DPE/SPCP/LEPCA, Saclay Research Center, 91191 Gif-sur-Yvette Cedex, France. Commissariat à l' Énergie Atomique (CEA).
J. M Delaye
Affiliation:
DCC/DRRV/SCD/LIECM, RhÔne Valley Research Center, BP 171, 30207 Bagnols-sur-Cèze Cedex, France. Commissariat à l' Énergie Atomique (CEA).
D. Ghaleb
Affiliation:
DCC/DRRV/SCD/LIECM, RhÔne Valley Research Center, BP 171, 30207 Bagnols-sur-Cèze Cedex, France. Commissariat à l' Énergie Atomique (CEA).
Get access

Abstract

Molecular dynamics simulation techniques were applied to model the incorporation of plutonium in the French nuclear waste glass matrix. Born-Mayer-Huggins analytical potentials were established to characterize short-range interactions between Pu–O and Pu–Pu pairs; the potentials were fitted to the structural properties of plutonium dioxide in the light of a recent experimental study showing that plutonium is found as Pu(IV) in the glass. The transferability of the established potentials to the glass structure is discussed, and the potential parameters are further refined by molecular dynamics simulations in an aluminoborosilicate glass to obtain mean Pu–O interatomic distances and firstneighbor coordination numbers matching the experimental values as closely as possible. Previously published Born-Mayer-Huggins potentials supplemented by Stillinger-Weber three-body terms were used for oxygen-cation and cation-cation interactions. The difficulties encountered in establishing a Pu–O potential that provides satisfactory results in both oxides and glasses are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Delaye, J-M., Louis-Achille, V. and Ghaleb, D., J. Non-Cryst. Solids, 210, p. 232 (1997).Google Scholar
2. Delaye, J-M. and Ghaleb, D., Mat. Sci. & Eng. B 37, p. 232 (1996).Google Scholar
3. Bonniaud, R., Jacquet-Francillon, N., Sombret, C., Scientific Basis for Nuclear Waste Management Management vol.2, Northrup, C.J.M. Jr., Plenum Press, New York, 1980, p. 117.Google Scholar
4. Matzke, Hj., Geel, J. van, Proc. NATO Advanced Research Workshop “Weapon Plutonium Disposa” St. Petersburg, May 14-17, 1995, E. Merz, C.E. Walter, Kluwer Acad. Publ. 1996, p. 93.Google Scholar
5. Catlow, C.R.A., Proc. Royal Soc. A, 353, p. 533 (1977).Google Scholar
6. Dick, B.G. and Overhauser, A.W., Phys. Rev., 112, p. 90 (1958).Google Scholar
7. Catlow, C.R.A. and Mackrodt, W.C., Computer Simulation of Solids, Sringer-Verlag, 166, (1982).Google Scholar
8. Harding, J.H., Mol. Simul. 4, p. 255 (1990).Google Scholar
9. Soules, T.F., J. Non-Cryst. Solids. 49 p. 29 (1982).Google Scholar
10. Soules, T.F. and Varshneya, A.K. J. Am. Ceram. Soc., 64 p. 145 (1981).Google Scholar
11. Feuston, B.P. and Garofalini, S.H. J. Chem. Phys., 89 p. 5818 (1988).Google Scholar
12. Stillinger, F.H. and Weber, T.A., Phys. Rev. B, 43 p. 1194 (1991).Google Scholar
13. Hess, N.J., Weber, W.J., Conradson, S.D., J. Nucl. Mat., 254, p. 175 (1998).Google Scholar
14. Gale, J.D., Phil. Mag. B, 73, p. 19 (1996).Google Scholar
15. Gale, J.D., General Utility Lattice Program (GULP), Royal Institution, London, 19921994.Google Scholar
16. Gale, J.D., Catlow, C.R.A. and Mackrodt, W.C., Model. Simul. Mat. Sci. Eng., 1 p. 73 (1992).Google Scholar
17. Jackson, R.A., Murray, A.D., Harding, J.H. and Catlow, C.R.A., Phil. Mag. A, 53, p. 27 (1986).Google Scholar
18. Padel, A. and Novion, C. de, J. NucL. Mat., 33, p. 40 (1969).Google Scholar
19. Sandenaw, T.A., J. Nucl. Mat., 10, p.165 (1963).Google Scholar
20. Ghaleb, D., Dussossoy, J-L, Fillet, C., Pacaud, F., Jacquet-Francillon, N., Scientific Basis for Nuclear Waste management XVIII, 353, p. 107, Ed. Murakami, T., Ewing, R.C., (1994).Google Scholar
21. Meis, C. and Gale, J.D., Mat. Sci. & Eng. B, 57, 1, 5261 (1998).Google Scholar