Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T10:16:59.469Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of the Effects of Energetic Cluster Ion Impact on Solid Surface

Published online by Cambridge University Press:  22 February 2011

Z. Insepov
Affiliation:
Permanent address: Kazakh Polytechnic Institute, 22Satpaev Str., Almaty, Kazakhstan, SU 480013
M. Sosnowski
Affiliation:
Permanent address: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
G. H. Takaoka
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Kyoto 606, Japan
I. Yamada
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Kyoto 606, Japan
Get access

Abstract

Beams of energetic clusters may provide a unique tool for surface modification. Experimental data on the effects of cluster bombardment are still scarce but Molecular Dynamics Simulation may help guide the research in most promising directions. We modeled Ar cluster impact on gold surface and compared the calculated sputtering yield with the available experimental data at 30 keV. The results confirm the uniqueness of cluster impacts characterized by deposition of very high energy density at the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Beuhler, R. J. and Friedman, L., Chem. Rev. 86, 521(1986).Google Scholar
2 Thompson, D. A., Radiation Effects 56, 105 (1981).Google Scholar
3 Matthew, M. W., Beuhler, R. J., Ledbetter, M. and Friedman, L., J. Phys. Chem. 90, 3152 (1986).Google Scholar
4 Sosnowski, M., Proceedings ot the 3-rd International Conference on Advanced Materials, Symposium U, Tokyo 1993, Elsevier Science Publishers, in print.Google Scholar
5 Abraham, Farid F., Reports on Progress in Physics 45, 1113 (1982), also Farid F. Abraham, Advances in Physics 35, 1(1986).Google Scholar
6 Hsieh, H., Averback, R. S., Sellers, H. and Flynn, C. P., Phys. Rev. B45 4417 (1992)Google Scholar
7 Soler, J. M., Sáenz, J.J., Garsía, N. and Echt, O., Chem. Phys. Lett. 109 (1984) 71.Google Scholar
8 Fenyö, D. , Sundqvist, B. U. R., Karlsson, B. R. , Jonson, R. E. , Phys. Rev. B42, 1895 (1990).Google Scholar
9 de Pristo, A. E. and Metiu, H., J. Chem. Phys. 90, 1229 (1989).Google Scholar
10 Rosato, V. , Guillope, M. and Legrand, B. , Phil. Mag., A59, 321 (1989)Google Scholar
11 Wucher, A., Wahl, M. and Oechsner, H., Nucl.Instr. and Meth. B82, 337 (1993).Google Scholar
12 Coon, S.R. et al. , Nucl. Instr. and Meth. B82, 329 (1993).Google Scholar
13 Wucher, A. and Garrison, B.J., Phys.Rev., B46, 4855 (1992).Google Scholar
14 Brown, W. L., Jarrold, M. F., McEachem, R. L., Sosnowski, M., Takaoka, G., Usui, H. and Yamada, I., Nucl. Instr. Methods B59/60, 182 (1991).Google Scholar