Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T01:19:13.399Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Mechanical Deformation of Ultra-Thin Amorphous Carbon Films

Published online by Cambridge University Press:  15 February 2011

J. N. Glosli
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550
M. R. Philpott
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
J. Belak
Affiliation:
University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Amorphous carbon films approximately 20nm thick are used throughout the computer industry as protective coatings on magnetic storage disks. The structure and function of this family of materials at the atomic level is poorly understood. Recently, we simulated the growth of a:C and a:CH films 1 to 5 nm thick using Brenner's bond-order potential model with added torsional energy terms. The microstructure shows a propensity towards graphitic structures at low deposition energy (<1eV) and towards higher density and diamond-like structures at higher deposition energy (>20eV). In this paper we present simulations of the evolution of this microstructure for the dense 20eV films during a simulated indentation by a hard diamond tip. We also simulate sliding the tip across the surface to study dynamical processes like friction, energy transport and microstructure evolution during sliding.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, H-C and Bogy, D.B., J. Vac. Sci. Technol. A 5, 3287 (1987).Google Scholar
2. Gill, A., Wear 168, 143 (1993).Google Scholar
3. Li, F. and Lannin, J.S., Phys. Rev. Lett. 65, 1905 (1990).Google Scholar
4. McKenzie, D.R., Muller, D., and Pailthorpe, B.A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
5. McKenzie, D.R., Yin, Y., Marks, N.A., Davis, C.A., Pailthorpe, B.A., Amaratunga, G.A.J., Veerasamy, V.S., Diamond and Related Materials 3, 353 (1994).Google Scholar
6. Gilkes, K.W.R., Gaskell, P.H., and Yaun, J., Diamond and Related Materials 3, 369 (1994).Google Scholar
7. Holl, S.M., Johnson, R.D., Novotny, V.J., Williams, J.L., Caley, C.E., Hoinkis, M., and Jones, R.E., Proceedings MRS Spring 1994 Symposium, Novel Forms of Carbon II, p54–62.Google Scholar
8. Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P., Phys. Rev. B 40, 1817 (1989).Google Scholar
9. Weiler, M., Kleber, R., Sattel, S., Jung, K., Ehrhardt, H., Jungnickel, G., Deutschmann, S., Stephan, U., Blaudeck, P., and Frauenheim, Th., Diamond and Related Materials 3, 245 (1994).Google Scholar
10. Beeman, D., Silverman, J., Lynds, R., and Anderson, M.R., Phys. Rev. B 30, 870 (1984).Google Scholar
11. Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988).Google Scholar
12. Pailthorpe, B.A. and Knight, P., Proceedings MRS Spring 1991 Symposium E.Google Scholar
13. Pailthorpe, B.A.. J. Appl. Phys. 70, 543 (1991).Google Scholar
14. Kaukonen, H-P. and Nieminen, R.M., Phys. Rev. Lett 68, 620 (1992).Google Scholar
15. Wang, C.Z., Ho, K.M., and Chan, C.T., Phys. Rev. Lett, 70, 611 (1993).Google Scholar
16. Wang, C.Z. and Ho, K.M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
17. Drabold, D.A., Fedders, P.A., and Strum, P., Phys. Rev. B 49, 16415 (1994).Google Scholar
18. Blaudeck, P., Frauenheim, Th., Porezag, D., Seifert, G., and Fromm, E., J. Phys.: Condens. Matter 4, 6389 (1992).Google Scholar
19. Frauenheim, Th., Blaudeck, P., Stephan, U., and Jungnickel, G., Phys. Rev. B 48, 4823 (1993).Google Scholar
20. Frauenheim, Th., Stephan, U., Blaudeck, P., and Jungnickel, G., Diamond and Related Materials 3, 462 (1994).Google Scholar
21. Jungnickel, G., Kuhn, M., Deutschmann, S., Richter, F., Stephan, U., Blaudeck, P., and Frauenheim, Th., Diamond and Related Materials 3, 1056 (1994).Google Scholar
22. Frauenheim, Th., Jungnickel, G., Kohler, Th., and Stephan, U., J. Non-Cryst. Solids 182, 186 (1995).Google Scholar
23. Robertson, J. and O'Reilly, E.P., Phys. Rev. B 35, 2946 (1987).Google Scholar
24. Robertson, J., Diamond and Related Materials 2, 984 (1993).Google Scholar
25. Robertson, J., Diamond and Related Materials 3, 361 (1994).Google Scholar
26. Glosli, J.N., Belak, J., and Philpott, M.R., Proceedings MRS Fall 1994 Symposium, Thin Films: Stresses and Mechanical Properties IV.Google Scholar
27. Brenner, D.W., Phys. Rev. B 42, 9458 (1990).Google Scholar
28. Brenner, D.W., Harrison, J.A., White, C.T., and Colton, R.J., Thin Solid Films 206, 220 (1991).Google Scholar
29. Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
30. Harrison, J.A., Brenner, D.W., White, C.T., and Colton, R.J., Thin Solid Films 206, 213 (1991).Google Scholar
31 Harrison, J.A., White, C.T., Colton, R.J., and Brenner, D.W., Phys. Rev. B 46, 9700 (1992).Google Scholar
32 Harrison, J.A., White, C.T., Colton, R.J., and Brenner, D.W., Surface Science 271, 57 (1992).Google Scholar
33. Harrison, J.A., White, C.T., Colton, R.J., and Brenner, D.W., J. Phys. Chem 97, 6573 (1993).Google Scholar
34. Harrison, J.A., Colton, R.J., White, C.T., and Brenner, D.W., Wear 168, 127 (1993).Google Scholar
35. Belak, J., Boercker, D.B., and Stowers, I.F., MRS Bulletin 18, 55 (1993).Google Scholar