Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T10:12:48.968Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxial Growth of InAs/AIGaAsSb Deep Quantum Wells on GaAs Substrates

Published online by Cambridge University Press:  21 February 2011

N. Kuze
Affiliation:
a8212678@ut.asahi-kasei.co.jp
H. Goto
Affiliation:
Central Laboratory, Asahi Chemical Ind., Co., Ltd., 2–1, Samejima, Fuji, Shizuoka, 416, Japan
S. Miya
Affiliation:
Central Laboratory, Asahi Chemical Ind., Co., Ltd., 2–1, Samejima, Fuji, Shizuoka, 416, Japan
S. Muramatsu
Affiliation:
Central Laboratory, Asahi Chemical Ind., Co., Ltd., 2–1, Samejima, Fuji, Shizuoka, 416, Japan
M. Matsui
Affiliation:
Central Laboratory, Asahi Chemical Ind., Co., Ltd., 2–1, Samejima, Fuji, Shizuoka, 416, Japan
I. Shibasaki
Affiliation:
Central Laboratory, Asahi Chemical Ind., Co., Ltd., 2–1, Samejima, Fuji, Shizuoka, 416, Japan
Get access

Abstract

We have investigated InAs deep quantum well structures (InAs DQWs) made from InAs/A1GaAsSb materials on GaAs substrates by molecular beam epitaxy (MBE). In the InAs DQWs, AlGaAsSb layers are lattice-matched to InAs. Using reflection high-energy electron diffraction (RHEED) linescan image analysis, we show that AlGaAsSb on GaAs surfaces quickly relaxes within 3 to 7 monolayers (MLs). The initial stages of AlxGa1-xAsSb (0≤x≤0.5) growth on GaAs (100) substrates and InAs growth on AlGaAsSb layers have been investigated by atomic force microscopy. The ridgeline shapes of AlGaAsSb are observed at the initial stage on GaAs surfaces. In the interface of the InAs/AIGaAsSb, two-dimensional (2D) growth of InAs has been observed. With a thin buffer layer of 600 nm AlGaAsSb, we have achieved very high electron mobilities of more than 32000 cm2/V-s at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tuttle, G., Kroemer, H. and English, J.H., J. Appl. Phys. 65, 5239 (1989).Google Scholar
2 Yoh, K., Moriuchi, T., Yano, M. and Inoue, M., J. Crystal Growth 111, 643 (1991).Google Scholar
3 Ideshita, S., Furukawa, A., Mochizuki, Y. and Mizuta, M., Appl. Phys. Lett. 60, 2549 (1992).Google Scholar
4 Munekata, H., Esaki, L. and Chang, L.L., J. Vac. Sci. Technol. B 5, 809 (1987).Google Scholar
5 Bolognesi, C.R., Kroemer, H. and English, J.H., J. Vac. Sci. Technol. B 10, 877 (1992).Google Scholar
6 Werking, J., Tuttle, G., Nguyen, C., Hu, E.L. and Kroemer, H., Appl. Phys. Lett. 57, 905 (1990).Google Scholar
7 Yoh, K., Moriuchi, T. and Inoue, M., IEEE Electron Device Lett. EDL–11, 526 (1990).Google Scholar
8 Li, X., Longenbach, K.F., Wang, Y. and Wang, W.I., IEEE Electron Device Lett. EDL–13, 192 (1992).Google Scholar
9 Nagase, K., Muramatsu, S., Kuze, N., Iwabuchi, T., Ichii, A., Toyama, M. and Shibasaki, I., in Digest of Technical Papers; Late News, Transducers '93 (1993).Google Scholar
10 Nagase, K., Muramatsu, S., Kuze, N., Ichii, A., Shibasaki, I. and Mori, K., in Technical Digest of 12th Sensor Symp., p.209 (1994).Google Scholar
11 Kuze, N., Nagase, K., Muramatsu, S., Miya, S., Iwabuchi, T., Ichii, A. and Shibasaki, I., J. Crystal Growth 150, 1307 (1995).Google Scholar