Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-04T15:51:37.682Z Has data issue: false hasContentIssue false

Modifying Crystallographic Orientations of Polycrystalline Si Films Using Ion Channeling

Published online by Cambridge University Press:  25 February 2011

K. T-Y. Kung
Affiliation:
Department of Electrical Engineering and Computer ScienceMassachusetts Institute of technology, Cambridge, MA 02139
R. B. Ivepson
Affiliation:
Department of Electrical Engineering and Computer ScienceMassachusetts Institute of technology, Cambridge, MA 02139
R. Reif
Affiliation:
Department of Electrical Engineering and Computer ScienceMassachusetts Institute of technology, Cambridge, MA 02139
Get access

Abstract

Polycrystalline silicon films 4800 Å thick deposited via low pressure chemical vapor deposition on oxidized silicon wafers have been amorphized by silicon ion implantation and subsequently recrystallized at 700°C. Due to channeling of the ions through grains whose <110> axes were sufficiently parallel to the beam, these grains survived the implantation step and acted as seed crystals for the solid-phase epitaxial regrowth of the film. This work suggests the feasibility of combining ion implantation and furnace annealing to generate large-grain, uniformly oriented polycrystal1ine films on amorphous substrates. It is a potential low-temperature silicon-on-insulator technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lam, H. W., Pinizzotto, R. F., and Tasch, A. F. Jr., J. Electrochem. Soc. 128 1981 (1981); Celler, G. K., Trimble, L. E., Nq, K. K., Leamy, H. J., and Baumgart, H., Appl. Phys. Lett. 40 1043 (1982).Google Scholar
2. Inoue, T., Shibata, K., Kato, K., Yoshii, T., Higashinakagawa, I., Taniquchi, K., and Kashiwaqi, M., Mat. Res. Soc. Symp. Proc. 23 523 (1984); Knapp, J. A. and Picraux, S. T., Mat. Res. Soc. Symp. Proc. 23 533 (1984).Google Scholar
3. Pinizzotto, R. F., Lam, H. W., and Vaandrager, B. L., Appl. Phys. Lett. 40 388 (1982); Fan, J. C. C., Tsaur, B-Y., Chapman, R. L., and Geis, M. W., Appl. Phys. Lett. 41 186 (1982).Google Scholar
4. Geis, M. W., Flanders, D. C., and Smith, H. I., Appl. Phys. Lett. 35 71 (1979); Geis, M. W., Antoniadis, D. A., Silversmith, D. J., Mountain, R. W., and Smith, H. I., Appl. Phys. Lett. 37 454 (1980).Google Scholar
5. Roth, J. A., Olson, G. L., and Hess, L. D., Mat. Res. Soc. Symp. Proc. 23 431 (1984); Yamamoto, H., Ishawara, H., Furukawa, S., Tamura, M., and Tokuyama, T., Mat. Res. Soc. Symp. Proc. 25 511 (1984).Google Scholar
6. Reif, R. and Knott, J. E., Electron. Lett. 17 586 (1981).Google Scholar
7. Kwizera, P. and Reif, R., Appl. Phys. Lett. 41 379 (1982); Kwizera, P. and Reif, R., Thin Solid Films 100 227 (1983).Google Scholar
8. Iverson, R. B. and Reif, R., Mat. Res. Soc. Symp. Proc. 27 543 (1984).Google Scholar
9. Kamins, T. I., Mandurah, M. M., and Saraswat, K. C., J. Electrochem. Soc. 125 927 (1978).Google Scholar
10. Estimated using: (a) the channeling half angle ψ1/2 = 6° for 103 keV Ra ions in <110> Si measured by c. Jech, Phys. Lett. 39A 417 (1972); and (b) the approximate relation ψ1/2 ∝ (Z/E)1/2 discussed in Grahmann, H., Feuerstein, A., and Kalbitzer, S., Rad. Effects 29 117 (1976).+Si+measured+by+c.+Jech,+Phys.+Lett.+39A+417+(1972);+and+(b)+the+approximate+relation+ψ1/2+∝+(Z/E)1/2+discussed+in+Grahmann,+H.,+Feuerstein,+A.,+and+Kalbitzer,+S.,+Rad.+Effects+29+117+(1976).>Google Scholar