Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:56:37.283Z Has data issue: false hasContentIssue false

Modification of μm Thick Surface Layers Using keV Ion Energies*

Published online by Cambridge University Press:  25 February 2011

L. E. Rehn
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
N. Q. Lam
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
H. Wiedersich
Affiliation:
Materials Science and Technology Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, U.S.A.
Get access

Abstract

Root-mean-square diffusion distances for both vacancy and interstitial defects in metals can be very large at elevated temperatures, e.g. several μm's in one second at 500°C. Consequently, defects that escape the implanted region at elevated temperature can produce compositional and microstructural changes to depths which are much larger than the ion range. Because of the high defect mobilities, and of the fact that diffusion processes must compete with the rate of surface recession, the effects of defect production (ballistic mixing), radiation-enhanced diffusion and radiation- induced segregation become spatially separated during ion bombardment at elevated temperature. Results of such experimental studies in a Cu-Ni alloy are presented, discussed and compared with predictions of a phenomenological model. Contributions to the subsurface compositional changes from radiation-enhanced diffusion and radiation- induced segregation are clearly identified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy.

References

REFERENCES

1. Cadien, K. C., Roy, M. A., Shin, S. M., Rigsbee, J. M., Barnett, S. A. and Greene, J. E., Mat. Res. Soc. Symp. Proc. 7, 93 (1982).Google Scholar
2. Rehn, L. E., Mat. Res. Soc. Symp. Proc. 7, 17 (1982).Google Scholar
3. Lam, N. Q. and Wiedersich, H., J. Nucl. Mater. 103 & 104, 433 (1982).Google Scholar
4. Rehn, L. E., Boccio, V. T. and Wiedersich, H., Surf. Sci. 128, 37 (1983).Google Scholar
5. Shimizu, H., Ono, M. and Nakayama, K., Surf. Sci. 36, 817 (1973).Google Scholar
6. Lam, N. Q. and Wiedersich, H., Rad. Effects Letters 67(4), 107 (1982).Google Scholar
7. Lam, N. Q., Hoff, H. A., Wiedersich, H. and Rehn, L. E., these proceedings.Google Scholar
8. Siegel, R. W. in Positron Annihilation, Coleman, P. G. et al. , eds., North Holland Publishing Co., New York, 351 (1982).Google Scholar
9. English, C. A., Eyre, B. L. and Summers, J., Phil. Mag. 34, 603 (1976).Google Scholar
10. Robinson, I. M. and Jenkins, M. L., Phil. Mag. A 43,999 (1981).Google Scholar
11. Ho, P. S., Surf. Sci. 72, 253 (1978).Google Scholar
12. Swartzfager, D. G., Ziemecki, S. B. and Kelley, M. J., J. Vac. Sci. Technol. 19(2), 185 (1981).Google Scholar
13. Webb, R., Carter, G. and Collins, R., Had. Effects 39, 129 (1978).Google Scholar
14. Wiedersich, H. in Surface Modification and Alloying, Poate, J. M. and Foti, G., eds., Plenum Press, New York 261 (1983).Google Scholar
15. Rehn, L. E., Wagner, W. and Wiedersich, H., Scripta Met. 15, 683 (1981).Google Scholar
16. Wagner, W., Naundorf, V., Rehn, L. E. and Wiedersich, H. in Effects of Radiation on Materials, Brager, H. R. and Perrin, J. S., eds., ASTM, Philadelphia, PA, 895 (1982).Google Scholar
17. Gudladt, H. J., Naundorf, V., Macht, M.-P. and Wollenberger, H., J. Nucl. Mater. 118, 73 (1983).Google Scholar