Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T07:47:08.140Z Has data issue: false hasContentIssue false

Modeling the Effects of Solvation on the Structure and Properties of Optical Limiting Materials Using Ab Initio Quantum Chemistry

Published online by Cambridge University Press:  03 September 2012

P. N. Day
Affiliation:
Air Force Wright Laboratory, Materials Directorate, Wright-Patterson AFB, OH 45433, daypaul@biotech.ml.wpafb.af.mil, wangz@biotech.ml.wpafb.af.mil, pachterr@ml.wpafb.af.mil
Z. Wang
Affiliation:
Air Force Wright Laboratory, Materials Directorate, Wright-Patterson AFB, OH 45433, daypaul@biotech.ml.wpafb.af.mil, wangz@biotech.ml.wpafb.af.mil, pachterr@ml.wpafb.af.mil
R. Pachter
Affiliation:
Air Force Wright Laboratory, Materials Directorate, Wright-Patterson AFB, OH 45433, daypaul@biotech.ml.wpafb.af.mil, wangz@biotech.ml.wpafb.af.mil, pachterr@ml.wpafb.af.mil
Get access

Abstract

he Effective Fragment Potential (EFP) model of solvation can now be extended beyond aqueous systems due to the development of transferable exchange repulsion potentials. EFPs for methanol and chloroform have been developed, and calculations with these new EFPs agree well with full ab initio calculations. Ab initio calculations have been carried out on zinc tetraphenyl-octobromyl-porphyrin both with and without the EFP solvation model. While the aqueous calculation, which had its geometry optimized, gave good results, the single-point calculations carried out with the two new solvent models indicate the need for geometry optimization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maclean, D. G., Brandelik, D. M., Brant, M. C., Sutherland, R. L., and Flietz, P. A., Photoluminescence in C60/toluene Solutions, SPIE Proceedings, Vol.2229, p6877.Google Scholar
2. Kirkwood, J. G., J. Chem. Phys. 2, 351 (1934); L. Onsager,. J. Am. Chem. Soc. 58, 1486 (1936); O. Tapia, O. Goscinski, Mol. Phys. 29, 1653 (1975); M. M. Karelson, A. R. Katritzky, M. C. Zerner, Int. J. Quantum Chem. Symp. 20, 521 (1986); K. V. Mikkelsen, H. Aagren, H. J. A. Jensen, T. Helgaker, J. Chem. Phys. 89, 3086 (1988); M. W. Wong, M. J. Frisch, K. B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991); M. Szafran, M. Karelson, A. R. Katritzky, J. Koput, M. C. Zerner, J. Comput. Chem. 14, 371 (1993); M. Karelson, T. Tamm, M. C. Zerner, J. Phys. Chem. 97, 11901 (1993).Google Scholar
3. Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H.,; Cohen, D., Garmer, D. R., Kraus, M., Stevens, W. J., Modeling the Hydrogen Bond, edited by Smith, D. A., ACS Symposium Series 569, 1994, p139; P. N. Day, J. H. Jensen, M. S. Gordon, W. J. Stevens, M. Krauss, D. Garmer, H. Basch, and D. Cohen; J. Chem. Phys. 105, 1968 (1996).Google Scholar
4. Chen, W. (private communication).Google Scholar
5. Day, P. N. and Pachter, R., submitted to J. Chem. Phys.Google Scholar
6. Jensen, J. H. and Gordon, M. S., Mol. Phys. 5, 1313 (1996).Google Scholar
7. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M., and Montgomery, J. A., J. Comput. Chem. 14, 1347 (1993).Google Scholar
8. Dunning, T. H. Jr. and Hay, P. J., Methods of Electronic Structure Theory, edited by Shaefer, H. F. III, Plenum Press, N.Y. 1977, pp 127. Note that GAMESS uses inner/outer scale factors of 1.2 and 1.15 for DH's hydrogen. For the polarization functions added to this basis, the exponents used were 0.75, 0.80, and 0.85 for the d-type functions on carbon, nitrogen, and oxygen, respectively, and 1.0 for the ptype functions on hydrogen.Google Scholar
9. Gouterman, M., J. Mol. Spect. 6, 138 (1961).Google Scholar