Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T14:33:18.792Z Has data issue: false hasContentIssue false

Modeling of Exciplex Recombination in Organic Bilayer Structures

Published online by Cambridge University Press:  03 October 2012

Feilong Liu
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A.
P. Paul Ruden
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Ian H. Campbell
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Darryl L. Smith
Affiliation:
University of Minnesota, Minneapolis, MN 55455, U.S.A. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

The effect of exciplex dynamics on the device characteristics of organic semiconductor bilayer structures is explored. Exciplex formation, dissociation, and relaxation to the ground state are incorporated into a physics-based device model. The model is applied to both organic light emitting diodes and photovoltaic cells. In the examples, C60and tetracene parameters are used for the electron and hole transport layers, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jenekhe, S. A. and Osaheni, J. A., Science 265, 765 (1994)CrossRefGoogle Scholar
Osaheni, J. A. and Jenekhe, S. A., Macromolecules 27, 739 (1994)CrossRefGoogle Scholar
Dodabalapur, A., Solid State Commun. 102, 259 (1997)CrossRefGoogle Scholar
Kido, J., Kimura, M., and Nagai, K., Science, 267, 1332 (1995)CrossRefGoogle Scholar
Tang, C. W., Appl. Phys. Lett. 48, 183 (1986)CrossRefGoogle Scholar
Gebler, D. D., Wang, Y. Z., Blatchford, J. W., Jessen, S. W., Fu, D. K., Swager, T. M., MacDiarmid, A. G., and Epstein, A. J., Appl. Phys. Lett. 70, 1644 (1997)CrossRefGoogle Scholar
Lai, S. L., Chan, M. Y., Tong, Q. X., Fung, M. K., Wang, P. F., Lee, C. S., and Lee, S. T., Appl. Phys. Lett. 93, 143301 (2008)CrossRefGoogle Scholar
Wang, D., Li, W., Chu, B., Su, Z., Bi, D., Zhang, D., Zhu, J., Yan, F., Chen, Y., and Tsuboi, T., Appl. Phys. Lett. 92, 053304 (2008)CrossRefGoogle Scholar
Peumans, P., Uchida, S., and Forrest, S. R., Nature, 425, 158 (2003)CrossRefGoogle Scholar
Müller, J. G., Lupton, J. M., Feldmann, J., Lemmer, U., Scharber, M. C., Sariciftci, N. S., Brabec, C. J., and Scherf, U., Phys. Rev. B, 72, 195208 (2005)CrossRefGoogle Scholar
Pal, S. K., Kesti, T., Maiti, M., Zhang, F., Inganäs, O., Hellström, S., Andersson, M. R., Oswald, F., Langa, F., Österman, T., Pascher, T., Yartsev, A., and Sudström, V., J. Am. Cem. Soc., 132, 12440 (2010)CrossRefGoogle Scholar
Abakumov, V. N., Perel, V. I., and Yassievich, I. N., in Nonradiative Recombination in Semiconductors (North-Holland, Amsterdam, 1991), p.108.Google Scholar
Davids, P. S., Campbell, I. H., and Smith, D. L., J. Appl. Phys. 82, 6319 (1997)CrossRefGoogle Scholar
Crone, B. K., Davids, P. S., Campbell, I. H., and Smith, D. L., J. Appl. Phys. 87, 1974 (2000)CrossRefGoogle Scholar
Onsager, L., Phys. Rev. 54, 554 (1938)CrossRefGoogle Scholar
Braun, C. L., J. Chem. Phys. 80, 4157 (1984)CrossRefGoogle Scholar
Liu, F., Ruden, P. P., Campbell, I. H., and Smith, D. L., Appl. Phys. Lett. 99, 123301 (2011)CrossRefGoogle Scholar
Baldo, M. A. and Forrest, S. R., Phys. Rev. B 64, 085201 (2001)CrossRefGoogle Scholar