Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-23T13:25:03.243Z Has data issue: false hasContentIssue false

Modeling of Chlorine Related Defects and Complexes in ZnMgSe

Published online by Cambridge University Press:  21 March 2011

Yaxiang Yang
Affiliation:
Department of Physics, West Virginia University Morgantown, WV 26506, U. S. A.
Leonid Muratov
Affiliation:
Department of Physics, West Virginia University Morgantown, WV 26506, U. S. A.
Bernard R. Cooper
Affiliation:
Department of Physics, West Virginia University Morgantown, WV 26506, U. S. A.
Thomas H. Myers
Affiliation:
Department of Physics, West Virginia University Morgantown, WV 26506, U. S. A.
John M. Wills
Affiliation:
Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We have used the ab-initio full potential LMTO method to model native defects and chlorine-impurity-related defects in ZnSe and ZnxMg1−xSe. Our results show that there is a strong tendency for formation of a defect complex between a chlorine impurity at the Se site and a vacancy at the neighboring Zn site. The formation energies of this complex and other chlorine related defects decrease in the presence of magnesium. However, the maximum achievable electron concentration in the presence of magnesium is lower because of the increase in the band gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laks, D. B., Van-de-Walle, C. G., Neumark, G. F., and Pantelides, S. T., Phys Rev Let. 66, 648 (1991)Google Scholar
2. Laks, D. B., Van-de-Walle, C. G., Neumark, G. F., Blochl, P. E., and Pantelides, S. T., Phys. Rev. B 45, 10965 (1992)Google Scholar
3. Garcia, A. and Northrup, J. E., Phys. Rev. Let. 74, 113 (1995)Google Scholar
4. Van-de-Walle, C. G., Laks, D. B., Neumark, G. F., and Pantelides, S. T., Phys. Rev. B 47, 9425 (1993),Google Scholar
5. , Byoung-Ho-Cheong, Park, C. H. and Chang, K. J. Phys. Rev. B 51, 10610 (1995)Google Scholar
6. Park, C. H. and Chadi, D. J. Phys. Rev. Lett. 75 1134 (1995)Google Scholar
7. Pöykkö, S., Puska, M. J., and Nieminen, R. M., Phys. Rev. B 57, 12164 (1998)Google Scholar
8. Pöykkö, S., Puska, M. J., and Nieminen, R. M., Phys. Rev. B 57, 12174 (1998)Google Scholar
9. Gundel, S., Albert, D., Nürnberger, J., and Faschinger, W., Phys. Rev. B 60 R16271 (1999)Google Scholar
10. Wills, J. M., unpublished (1995)Google Scholar
11. Yu, R., Singh, D., and Krakauer, H., Phys. Rev. B 43, 6411 (1991)Google Scholar
12. Ferreira, S. O., Sitter, H. and Faschinger, W., Appl. Phys. Lett. 66(12). 20 March 1995.Google Scholar
13. Muratov, L., Little, S., Yang, Y., Cooper, B. R., Myers, T. H. and Wills, J. M. to be published.Google Scholar
14. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980)Google Scholar
15. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar