Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T06:49:49.063Z Has data issue: false hasContentIssue false

Modeling magnetoelasticity and magnetoplasticity with disconnections and disclinations

Published online by Cambridge University Press:  01 February 2011

Peter Mullner
Affiliation:
petermullner@boisestate.edu, Boise State University, Materials Science and Engineering, 1910 University Dr., MS 2075, Boise, ID, 83725, United States, 208-426 5136
Alan Steward Geleynse
Affiliation:
trano@ra726.net, Boise State University, Materials Science and Engineering, 1910 University Dr., MS 2075, Boise, ID, 83725, United States
David Robert Carpenter
Affiliation:
carpenter793@hotmail.com, Boise State University, Materials Science and Engineering, 1910 University Dr., MS 2075, Boise, ID, 83725, United States
Michael Scott Hagler
Affiliation:
haglermsh@msn.com, Boise State University, Materials Science and Engineering, 1910 University Dr., MS 2075, Boise, ID, 83725, United States
Markus Chmielus
Affiliation:
markus@chmielus.de, Boise State University, Materials Science and Engineering, 1910 University Dr., MS 2075, Boise, ID, 83725, United States
Get access

Abstract

The magneto-mechanical properties of magnetic shape-memory alloy single crystals depend strongly on the twin microstructure which is established during the martensitic transformation, and through thermo-magneto-mechanical training. For self-accommodated martensite, twin thickness and magnetic-field-induced strain are very small. For effectively trained crystals, a single twin may comprise the entire sample and magnetic-field-induced strain reaches the theoretical limit. Furthermore, the deformation of self-accommodated martensite is pseudo-elastic (magnetoelasticity) while the deformation of effectively trained crystals is plastic (magnetoplasticity). Twin microstructures of self-accommodated martensite were modeled using disclinations which are line defects such as dislocations, however with a rotational displacement field. The defect structure was approximated in a quadrupole solution where two quadrupoles represent an elementary twin double layer unit. The twin boundary was inclined to the twinning plane which required the introduction of twinning disconnections. The shear stress-shear strain properties of self-accommodated martensite were analyzed numerically for different initial configurations of the twin boundary (i.e. for different initial positions of the disconnections). The shear stress-shear strain curve is sensitive to the initial configuration indicating that disconnection nucleation is controlling the magneto-mechanical properties of self-accommodated martensite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Murray, S.J., Marioni, M., Allen, S.M, O'Handley, R.C., and Lograsso, T.A, Applied Physics Letters, 77(6), 886888 (2000).Google Scholar
2 Sozinov, A., Likhachev, A.A, Lanska, N., and Ullakko, K., Applied Physics Letters, 80(10), 17461748 (2002).Google Scholar
3 Müllner, P., Chernenko, V.A, and Kostorz, G., Journal of Applied Physics, 95(3), 15311536 (2004).Google Scholar
4 Ullakko, K., Huang, J.K, Kantner, C., OHandley, R.C, and Kokorin, V.V, Applied Physics Letters, 69(13), 19661968 (1996).Google Scholar
5 Lazpita, P., Rojo, G., Gutierrez, J., Barandiaran, J.M, and O'Handley, R.C., Sensor Letters, 5(1), 6568 (2007).Google Scholar
6 Müllner, P., Chernenko, V.A, Mukherji, D., and Kostorz, G.. Cyclic magnetic-field-induced deformation and magneto-mechanical fatigue of Ni-Mn-Ga ferromagnetic martensites. in MRS Fall Symposium ‘Materials and Devices for Smart Systems’. 2003, Eds. Furuya, Y. et al. Boston, MA: Materials Research Society, pp. 415420.Google Scholar
7 Chmielus, M., Chernenko, V., Knowlton, W.B, Kostorz, G., and Müllner, P., European Physical Journal Special Issues, in press (2007).Google Scholar
8 Liebermann, H.H. and Graham, C.D Jr., Acta Metallurgica, 25, 715720 (1977).Google Scholar
9 Kostorz, G. and Müllner, P., Zeitschrift für Metallkunde, 96(7), 703709 (2005).Google Scholar
10 L'vov, V.A., Zagorodnyuk, S.P, and Chernenko, V.A, European Physical Journal B, 27(1), 5562 (2002).Google Scholar
11 L'vov, V.A., Gomonaj, E.V, and Chernenko, V.A, Journal of Physics-Condensed Matter, 10(21), 45874596 (1998).Google Scholar
12 James, R.D., Tickle, R., and Wuttig, M., Materials Science and Engineering A, 275, 320325 (1999).Google Scholar
13 James, R.D. and Wuttig, M., Philosophical Magazine A, 77(5), 12731299 (1998).Google Scholar
14 Tickle, R. and James, R.D, Journal of Magnetism and Magnetic Materials, 195(3), 627638 (1999).Google Scholar
15 Müllner, P., Chernenko, V.A, Wollgarten, M., and Kostorz, G., Journal of Applied Physics, 92(11), 67086713 (2002).Google Scholar
16 Kakeshita, T., Fukuda, T., and Takeuchi, T., Materials Science and Engineering A, 438, 1217 (2006).Google Scholar
17 Müllner, P., Chernenko, V.A, and Kostorz, G., Journal of Magnetism and Magnetic Materials, 267(3), 325334 (2003).Google Scholar
18 Pond, R.C. and Celotto, S., International Materials Reviews, 48(4), 225245 (2003).Google Scholar
19 Hirth, J.P. and Pond, R.C, Acta Materialia, 44(12), 47494763 (1996).Google Scholar
20 Pond, R.C. and Hirth, J.P, Solid State Physics - Advances in Research and Applications, Vol 47, 47, 287365 (1994).Google Scholar
21 Müllner, P. and Solenthaler, C., Materials Science and Engineering A, 230(1-2), 107115 (1997).Google Scholar
22 Christian, J.W. and Mahajan, S., Progress in Materials Science, 39(1-2), 1157 (1995).Google Scholar
23 Müllner, P., Zeitschrift für Metallkunde, 97(3), 205216 (2006).Google Scholar
24 Müllner, P., Local Lattice Rotations and Disclinations in Microstructures of Distorted Crystalline Materials, 87, 227238 (2002).Google Scholar
25 Kroupa, F. and Lejcek, L., Local Lattice Rotations and Disclinations in Microstructures of Distorted Crystalline Materials, 87, 114 (2002).Google Scholar
26 Romanov, A. and Vladimirov, V.I, Disclinations in Crystalline Solids, in Dislocations in Solids, Nabarro, F.R.N, Editor. 1992, Elsevier Science Publishers B.V.: Amsterdam. p. 191402.Google Scholar
27 Romanov, A.E., Materials Science and Engineering A, 164(1-2), 5868 (1993).Google Scholar
28 Ahlers, M., Philosophical Magazine A, 82(6), 10931114 (2002).Google Scholar
29 Müllner, P. and Romanov, A.E, Scripta Metallurgica et Materialia, 31(12), 16571662 (1994).Google Scholar
30 Müllner, P., Clark, Z., Kenoyer, L., Knowlton, W.B, and Kostorz, G., Materials Science and Engineering A, in press (2007).Google Scholar
31 Christian, J.W., Metallurgical and Materials Transactions A, 25(9), 18211839 (1994).Google Scholar
32 Hurtado, J.A., Elliott, B.R, Shodja, H.M, Gorelikov, D.V, Campbell, C.E, Lippard, H.E, Isabell, T.C, and Weertman, J., Materials Science and Engineering A, 190(1-2), 17 (1995).Google Scholar
33 Romanov, A.E., Lefevre, M.J, Speck, J.S, Pompe, W., Streiffer, S.K, and Foster, C.M, Journal of Applied Physics, 83(5), 27542765 (1998).Google Scholar
34 Romanov, A.E., Pompe, W., and Speck, J.S, Journal of Applied Physics, 79(8), 40374049 (1996).Google Scholar
35 Müllner, P. and Romanov, A.E, Acta Materialia, 48(9), 23232337 (2000).Google Scholar
36 Müllner, P., Mukherji, D., Aguirre, M., Erni, R., and Kostorz, G.. Micromechanics of magnetic-field-induced twin-boundary motion in Ni-Mn-Ga magnetic shape-memory alloys. in Solid-to-Solid Phase Transformations in Inorganic Materials 2005. 2005, Eds. Howe, J.M et al. Phoenix, AZ: TMS, pp. 171185.Google Scholar
37 Kamat, S.V., Hirth, J.P, and Müllner, P., Philosophical Magazine A, 73(3), 669680 (1996).Google Scholar
38 Müllner, P. and Solenthaler, C., Philosophical Magazine Letters, 69(4), 171175 (1994).Google Scholar
39 Hirth, J.P. and Lothe, J., Theory of Dislocations. second ed. 1992, Malabar, FL: Krieger Publ. Co. p. 770.Google Scholar