Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-29T06:43:57.406Z Has data issue: false hasContentIssue false

Modeling DSC Annealing Peaks for Polyetherimide: Incorporation of Temperature Gradients

Published online by Cambridge University Press:  10 February 2011

Sindee L. Simon*
Affiliation:
Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261
Get access

Abstract

Enthalpy recovery of polyetherimide is measured during heating with differential scanning calorimetry (DSC) after cooling at various rates. The resulting annealing peaks are fit using the Moynihan-Tool-Narayanaswamy model of structural recovery. A self-consistent phenomenological equation is used to describe the experimentally observed structure and temperature dependence of the relaxation time in both glass and equilibrium regimes. Temperature gradients in the DSC sample are incorporated into the model calculations. When no thermal gradients are assumed, model parameters are found to vary with thermal history despite the use of the self-consistent equation for the relaxation time. Accounting for the presence of thermal gradients in the DSC sample is found to affect the values of the model parameters needed to fit the data. However, thermal gradients are unable to account for the thermal history dependence of the model parameters or for the discrepancy between the observed and calculated shapes of the DSC annealing peaks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Folte, C.R. and McKinney, P. V., J. Appl. Polym. Sci. 13, 2235 (1969).Google Scholar
2. Petrie, S. E. B., J. Polym. Sci., Part A-2 10, 1255 (1972).Google Scholar
3. Struik, L. C. E., Physical Aging in Amorphous Polymers and Other Materials, Elsevier, Amsterdam, 1978.Google Scholar
4. Narayanaswamy, O. S., J. Am. Ceram. Soc. 54, 491 (1971)Google Scholar
5. Kovacs, A. J., Ann. N.Y. Acad. Sci. 371, 38 (1981).Google Scholar
6. Moynihan, C. T., et al., Ann. N.Y. Acad. Sci. 15, 279 (1976).Google Scholar
7. Hodge, I. M., J. Non-Cryst. Solids 169, 211 (1994).Google Scholar
8. O'Reilly, , CRC Crit. Rev. in Solid State and Mat. Sci. 13 (3), 259 (1987).Google Scholar
9. Rendell, R. W., Aklonis, J. J., Ngai, K. L., and Fong, G. R., Macromolecules 20, 1070 (1987).Google Scholar
10. McKenna, G. B., in “Comprehensive Polymer Science, Volume 12, Polymer Properties”, Booth, C. and Price, C., Ed., Pergamon, Oxford (1989).Google Scholar
11. Tool, A. Q., J. Am. Ceram. Soc. 29, 240 (1946).Google Scholar
12. McKenna, G. B. and Angeli, C.A., J. Non-Cryst. Sol. 133–133, 528 (1991).Google Scholar
13. Moynihan, C. T., Crichton, S. N., and Opalka, S. M., J. Non-Cryst. Sol. 131–133, 420 (1991).Google Scholar
14. Hodge, I. M. and Huvard, G. S., Macromolecules 16, 371 (1983).Google Scholar
15. Hutchinson, J. M., Ruddy, M., and Wilson, M. R., Polymer 29, 152 (1988).Google Scholar
16. Kolrausch, F., Pogg. Ann. Phys. 12, 393 (1847).Google Scholar
17. Williams, G. and Watts, D.C., Trans. Faraday Soc. 66, 80 (1970).Google Scholar
18. O'Reilly, J. M. and Hodge, I. M., J. Non-Cryst. Solids 131–133, 451 (1991).Google Scholar
19. Moynihan, C. T., et al., J. Am. Cer. Soc. 59 (1–2), 12 (1976).Google Scholar
20. Vogel, H., Phys. Z. 22, 645 (1921).Google Scholar
21. Williams, M. L., Landell, R. F., and Ferry, J. D., J. Am. Chem. Soc. 77, 3701 (1955).Google Scholar
22. Sherer, G. W., J. Am. Cer. Soc. 67 (7), 504 (1984).Google Scholar
23. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43 (1), 139 (1965).Google Scholar
24. Echeverria, I., Su, P.-C., Simon, S. L., and Plazek, D. J., J. Polym. Sci.: Part B: Polym. Phys. 33, 2457(1995).Google Scholar
25. Yang, Y., in “Physical Properties of Polymers Handbook”, Mark, J. E., Ed., Chapter 10, American Institute of Physics, Woodbury, NY 1996.Google Scholar
26. Orwoll, R. A., in “Physical Properties of Polymers Handbook”, Mark, J. E., Ed., Chapter 7, American Institute of Physics, Woodbury, NY 1996.Google Scholar
27. Wen, J., in “Physical Properties of Polymers Handbook”, Mark, J. E., Ed., Chapter 9, American Institute of Physics, Woodbury, NY 1996.Google Scholar