Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:23:17.855Z Has data issue: false hasContentIssue false

Modeling and Simulation of Thermophysical Properties of Minor Actinides-Containing Oxide Fuels

Published online by Cambridge University Press:  01 February 2011

Masahito Katayama
Affiliation:
katayama@ms.see.eng.osaka-u.ac.jp, Graduate School of Engineering Osaka University, Division of Sustainable Energy and Environmental Engineering, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan, +81-6-6879-7905, +81-6-6879-7889
Jun Adachi
Affiliation:
adachi@ms.see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Ken Kurosaki
Affiliation:
kurosaki@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Masayoshi Uno
Affiliation:
uno@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Shuhei Miwa
Affiliation:
miwa.shuhei@jaea.go.jp, Japan Atomic Energy Agency, Narita-cho 4002, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393, Japan
Masahiko Osaka
Affiliation:
ohsaka.masahiko@jaea.go.jp, Japan Atomic Energy Agency, Narita-cho 4002, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393, Japan
Kenya Tanaka
Affiliation:
tanaka.kenya@jaea.go.jp, Japan Atomic Energy Agency, Narita-cho 4002, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393, Japan
Shinsuke Yamanaka
Affiliation:
yamanaka@see.eng.osaka-u.ac.jp, Osaka University, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
Get access

Abstract

The molecular dynamics (MD) calculation was performed for minor actinide (MA: Np and Am)-containing mixed oxide (MOX) fuels, U0.7-xPu0.3MAxO2, in the temperature range from 300 to around 2500 K to evaluate the thermal expansion, heat capacity, and thermal conductivity. The MD results showed that the calculated heat capacity and thermal conductivity were similar in all the composition ranges, indicating that MA scarcely affected the thermal properties of the MOX fuel in the perfect crystal system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aizawa, K., Prog. Nuc. Energ. 40, 349 (2002).Google Scholar
2. Wakabayashi, T., Prog. Nuc. Energ. 40, 457 (2002).Google Scholar
3. Morimoto, K., Kato, M., Komeno, A., Kashimura, M., Abe, T., Ogasawara, M., Sunaoshi, T., Une, H. and Tamura, T., Abstract of fall meeting of Atomic Energy Society of Japan, 2007, pp. 934 (P53).Google Scholar
4. Morimoto, K., Kato, M., Komeno, A., Kashimura, M. and Ogasawara, M., Abstract of fall meeting of Atomic Energy Society of Japan, 2006, pp. 401 (H24).Google Scholar
5. Yamada, K., Kurosaki, K., Uno, M., and Yamanaka, S., J. Alloys Compd. 307, 10 (2000).Google Scholar
6. Kurosaki, K., Yano, K., Yamada, K., Uno, M., Yamanaka, S., Yamamoto, K., and Namekawa, T., J. Nucl. Mater. 294, 160 (2001).Google Scholar
7. Kurosaki, K., Imamura, M., Sato, I., Namekawa, T., and Yamanaka, Shinsuke, J. Nucl. Sci. Technol. 41, 827 (2004).Google Scholar
8. Kawamura, K. and Hirao, K., Material Design using Personal Computer, Shokabo, Tokyo, Japan, 1994.Google Scholar
9. Andersen, H. C., J. Chem. Phys. 72, 2384 (1980).Google Scholar
10. Nose, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
11. Ida, Y., Phys. Earth Planet Interiors 13, 97 (1976).Google Scholar
12. Morse, P. M., Phys. Rev. 34, 57 (1929).Google Scholar
13. Martin, D. G., J. Nucl. Mater. 152, 94 (1988).Google Scholar
14. Serizawa, H., Arai, Y., Nakajima, K., J. Chem. Thermodyn. 33, 615 (2001).Google Scholar
15. Touloukian, Y. S., Kirby, R. K., Taylor, R. E., Lee, T. Y. R., Thermal expansion: Nonmetallic solids, IFI/Plenum, New York, 1977.Google Scholar
16. Fahey, J. A., Turcotte, R. P., and Chikalla, T. D., Inorg. Nucl. Chem. Lett. 10, 459 (1974).10.1016/0020-1650(74)80067-XGoogle Scholar
17. Jackson, R. A., Murray, A. D., Harding, J. H., and Catlow, C. R. A., Philos. Mag. A 53, 27 (1986).Google Scholar
18. Ralph, J., J. Chem. Soc. Farady Trans. 83, 1253 (1987).Google Scholar
19. Zwanzig, R., Ann. Rev. Phys. Chem. 16, 67 (1965).Google Scholar
20. L, R.. Gibby, J. Nucl. Mater. 38, 163 (1971).Google Scholar
21. Philipponneau, Y., J. Nucl. Mater. 188, 194 (1992).Google Scholar
22. Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).Google Scholar