Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T23:12:08.636Z Has data issue: false hasContentIssue false

A Model to Interpret the Raman Spectra of Disordered, Amorphous and Nanostructured Carbons

Published online by Cambridge University Press:  21 March 2011

Andrea Carlo Ferrari*
Affiliation:
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
Get access

Abstract

Raman spectroscopy is a very popular, non-destructive tool for the structural characterisation of carbons. Raman scattering from carbons is always a resonant process, in which those configurations whose band gaps match the excitation energy are preferentially excited. The Raman spectra of carbons do not follow the vibration density of states, but consist of three basic features, the G and D peaks around 1600 and 1350 cm-1 and an extra T peak, for UV excitation, at ∼980–1060 cm-1. TheRaman spectra at any wavelength depend on 1) clustering of the sp2 phase, 2)bond length and bond angle disorder, 3) presence of sp2 rings or chains, and 4) the sp2/sp3 ratio. It will be shown how the basic features of the Raman spectra vary by rationalising them within a three-stage model of order of carbons. It is shown how the three-stage model can account for the vast range of experimental data available for Raman experiments at any excitation wavelength. This model can also account for apparently contradictory trends reported in literature, since the clustering of the sp2 phase and the sp3 to sp2 conversion are separately treated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robertson, J., Prog. Solid State Chem 21, 199 (1991); Pure Appl. Chem. 66, 1789 (1994)J.Robertson, Adv. Phys.35, 317 (1986);Google Scholar
2. Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996.Google Scholar
3. Tuinstra, F. and Koening, J. L., J. Chem. Phys. 53, 1126 (1970)Google Scholar
4. Nemanich, R. J., Solin, S. A., Phys. Rev. B, 20, 329 (1979)Google Scholar
5. Lespade, P., Marchard, A., Couzi, M., Cruege, F., Carbon 22, 375 (1984)Google Scholar
6. Tamor, M. A., Vassel, W. C., J. Appl. Phys. 76, 3823 (1994)Google Scholar
7. Ferrari, A. C., Robertson, J., Phys. Rev. B, 61, 14095 (2000)Google Scholar
8. Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., Dresselhaus, M. S., Science, 75, 187 (1997)Google Scholar
9. Bethune, D. S., Meijer, G., Tang, W. C., Rosen, H. J., Golden, W. G., Seki, H., Brown, C. A., De Vries, M. S., Chem. Phys. Lett. 179, 181 (1991)Google Scholar
10. Brown, S.D.M., Corio, P., Marucci, A., Pimenta, M. A., Dresselhaus, M. S., Dresselhaus, G., Phys. Rev. B, 61, 7734 (2000)Google Scholar
11. Brown, S. D. M., Corio, P., Marucci, A., Dresselhaus, M. S., Pimenta, M. A., Kneipp, K., Phys. Rev. B, 61, R5137 (2000)Google Scholar
12. Ferrari, A.C., Robertson, J., Phys. Rev. B, submitted (2000)Google Scholar
13. Ferrari, A.C., Robertson, J., Phys. Rev. B63, 121405(R) (2001).Google Scholar
14. Gilkes, K. W. K., Sands, H. S., Batchelder, D. N., Robertson, J., Milne, W. I., Appl. Phys. Lett. 70, 1980 (1997)Google Scholar
15. Merkulov, V. I., Lannin, J. S., Munro, C. H., Asher, S. A., Veerasamy, V. S., Milne, W. I., Phys. Rev. Lett. 78, 4869 (1997)Google Scholar
16. Gilkes, K. W. R., Prawer, S., Nugent, K. W., Robertson, J., Sands, H. S., Lifshitz, Y., Shi, X., J. Appl. Phys. 87, 7283 (2000)Google Scholar
17. Pocsik, I., Hundhausen, M., Koos, M., Ley, L., J. Non-Cryst. Solids 227 230, 1083 (1998)Google Scholar
18. Matthews, M. J., Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., and Endo, M., Phys. Rev. B, 59, 6585 (1999)Google Scholar
19. Baranov, A.V., Bekhterev, A.N., Bobovich, Y. S., Petrov, V. I., Opt. Spectrosc. 62, 612 (1987)Google Scholar
20. Thomsen, C., Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
21. Mapelli, C., Castiglioni, C., Zerbi, G., Mullen, K., Phys. Rev. B, 60, 12710 (2000)Google Scholar
22. Castiglioni, C., Mapelli, C., Negri, F., and Zerbi, G., J. Chem. Phys. 114, 963 (2001); M. , C.Castiglioni, G.Zerbi and F.Negri, J. Mol. Structure, to be published (2001).Google Scholar
23. Conway, N.M.J., Ferrari, A.C., Flewitt, A. J., Robertson, J., Milne, W.I., Tagliaferro, A., Beyer, W., Diam. Relat. Mater. 9, 765 (2000)Google Scholar
24. Ilie, A., Ferrari, A. C., Yagi, T., Robertson, J., Appl. Phys. Lett. 76, 2627 (2000)Google Scholar
25. Vidano, R. P., Fishbach, D. B., Willis, L. J., Loehr, T. M., Solid. State Comm. 39, 341 (1981)Google Scholar
26. Tan, P., Deng, Y., Zhao, Q., Phys. Rev. B, 58, 5435 (1998)Google Scholar
27. Wang, Z., Huang, X., Xue, R., Chen, L., J.Appl. Phys. 84, 227 (1998)Google Scholar
28. Kawashima, Y. and Katagiri, G., Phys. Rev. B, 52, 10053 (1995)Google Scholar
29. Sinha, K. and Menendez, J., Phys. Rev. B 41, 10845 (1990)Google Scholar
30. Wang, Y., Alsmeyer, D. C., McCreery, R. L., Chem. Mater. 2, 557 (1990)Google Scholar
31. Pocsik, I., Koos, M., Hundhausen, M., Ley, L., in Amorphous Carbon: State of the Art, ed. by Silva, S. R. P. et al. (Word Scientific, Singapore, 1998), p.224 Google Scholar
32. Kohler, T., Frauenheim, T., Jungnickel, G., Phys. Rev. B 52, 11837 (1995)Google Scholar
33. Drabold, D. A., Fedders, P. A. and Strumm, P., Phys. Rev. B 49, 16415 (1994)Google Scholar
34. Lopinski, G P, Merkulov, V I, Lannin, J S, App Phys Lett 69 3348 (1996)Google Scholar
35. Shi, J. R., Shi, X., Sun, Z., Liu, E., Tay, B. K., Lau, S. P., Thin Solid Films 366, 169 (2000)Google Scholar
36. Mauri, F., Del Corso, A., Appl. Phys. Lett. 75, 644 (1999)Google Scholar
37. Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L. M., Rodil, S. E., Kleinsorge, B., Robertson, J., Phys. Rev. B 62, 11089 (2000)Google Scholar