Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T13:56:41.788Z Has data issue: false hasContentIssue false

Mocvd Growth of CdTe and HgTe on GaAs in a Vertical, High-Speed, Rotating-Disc Reactor

Published online by Cambridge University Press:  28 February 2011

G.S. Tompa
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, NJ 08873
C.R. Nelson
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, NJ 08873
P.D. Reinert
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, NJ 08873
M.A. Saracino
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, NJ 08873
L.A. Terrill
Affiliation:
EMCORE Corporation, 35 Elizabeth Avenue, Somerset, NJ 08873
Get access

Abstract

The metalorganic chemical vapor deposition (MOCVD) growth of CdTe and HgTe on GaAs (111) and (100) substrates in a vertical, high-speed, rotating-disc reactor was investigated. A range of total reactor pressure, carrier gas flow rate, chemical concentrations, deposition temperature, and rotation rate have been investigated in an attempt to optimize growth conditions. Diisopropyltelluride (DIPTe) and Dimethylcadmium (DMCd) were used as growth precursors. Thickness uniformity varies less than +/- 1.5% over 50 mm diameter wafers. Films having FWHM X-ray rocking curves less than 90 arcsec were obtained on GaAs (111) substrates. The films have excellent surface morphology, exhibiting less than 5x104 cm-2 orange peel dents which are << 1 µm in size. An elemental mercury source was added to the growth system. Initial results for the growth of HgTe and HgCdTe will be discussed in this text.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1). Lu, P.-Y., Williams, L.M., Wang, C.-H. and Chu, S.N.G., J. Vac. Sci. Technol. A5 (5) (1987) 31533156 Google Scholar
2). Schmit, J.L., J. Vac. Sci. Technol. A3 (1) (1985) 8992 CrossRefGoogle Scholar
3). Specht, L.T., Hoke, W.E., Oguz, S., Lemonias, P.J., Kreismanis, V.G., and Kornstein, R., Appl. Phys. Lett. 48 (6) (1986) 417419 CrossRefGoogle Scholar
4). Edwall, D.D., Gertner, E.R. and Bubulac, L.O., J. of Crystal Growth 86 (1988) 240247 CrossRefGoogle Scholar
5). Ghandhi, S.K., Bhat, I.B. and Fardi, H., Appl. Phys. Lett. 52 (5) (1988) 392394 CrossRefGoogle Scholar
6). Irvine, S.J.C. and Mullin, J.B., J. of Crystal Growth 55 (1981) 107115 Google Scholar
7). Anderson, P.L., J. Vac. Sci. Technol. A. 4 (4) (1986) 2162–2160Google Scholar
8). Hyliands, M.J., Thompson, J., Bevan, M.J., Woodhouse, K.T., and Vincent, V., J. Vac. Sci. Technol A 4 (4) (1986) 22172225 Google Scholar
9). Bean, R.C., Zanio, K.R., Hay, K.A., Wright, J.M., and Sailer, E.J.; and Fischer, R. and Morkoc, H., J. Vac. Sci. Technol. A 4 (4) (1986) 21532158 Google Scholar
10). Chou, R.-L., Lin, M.-S. and Chou, K.-S., Appl. Phys. Lett. 48 (8)(1986) 523525 Google Scholar
11). Tunnisliffe, J., Irvine, S.J.C., Dosser, O.D. and Mullen, J.B., J. of Cryst. Growth 68 (1984) 245253 Google Scholar
12). Bevan, M.J. anf Woodhouse, K.T., J. Cryst. Growth 68 (1984) 254261 CrossRefGoogle Scholar
13). Grimshaw, J.A., J. Cryst. Growth 68 (1984) 262270 Google Scholar
14). Tompa, G.S., Nelson, C.R., Saracino, M.A., and Colter, P.C.; and Anderson, P.L. and Wright, W.H.; and Schmit, J.L., Appl. Phys. Lett., in press.Google Scholar
15) Evans, G.H. and Grief, R., J. Heat Transfer, V109 (1987) 928935; and G.H. Evans and R. Grief, Numerical Heat Transfer, V12, (1987) 243-252Google Scholar
16) Nrady, J.F. and Durlofsky, L., J. Fluid Mech. (1987) 175 363394; C.A. Wang, S.H. Groves, S.C. Palmateer, D.W. Weyburn, and R. A. Brown, J. Cryst. Growth 77 (1986) 136-143; S.C. Palmateer, S.H. Groves, C.A. Wang, D.W. Weyburn, and R.A. Brown, J. Crys t. Growth, 83 (1987) 202-210Google Scholar
17). Tompa, G.S., McKee, M.K., Beckham, C., Zawadski, P.A., Colabella, J.M., Reinert, P.D., Capuder, K., Stall, R.A., and Norris, P.E., J. Cryst. Growth 93 (1988) 220227.Google Scholar
18). Bhat, I.B., Taskar, N.R. and Ghandi, S.K., Electochem. Soc. 134 (1) (1987) 195198 Google Scholar
19). Bhat, I.B., Taskar, N.R. and Ghandi, S.K., J. Vac. Sci. Technol. A 4 (4) (1986) 22302233 Google Scholar
20). Wang, C.H., Cheng, K.Y., Yang, S.J., and Hwang, F.C., J. Appl. Phys. 58 (2) (1985) 757762 Google Scholar
21). Anderson, P.L., unpublished results.Google Scholar
22). Maruyama, K., M. Yoshikawa and Takigawa, H., Mat. Res. Soc. Symp. Proc. Vol. 94. (1987) 275280 Google Scholar
23). Feldman, R.D., Oson, M., Austin, R.F., and Opila, R.L., J. Appl. Phys. 63 (8) (1988) 28722876 Google Scholar
24). Hoke, W.E. and Lemonias, P.J., Appl. Phys. Lett. 48 (24) (1986) 16691671 CrossRefGoogle Scholar