Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T17:21:44.049Z Has data issue: false hasContentIssue false

Minority Carrier Injection and Series Resistance Effects in Hydrogenated Amorphous Silicon Schottky Barrier Diodes

Published online by Cambridge University Press:  28 February 2011

Jerzy Kanicki*
Affiliation:
IBM Thomas J. Watson Research Center P.O.Box 218, Yorktown Heights, New York 10598, U.S.A.
Get access

Abstract

The minority-carrier injection and series resistance effects on the electrical properties of a-Si:H Schottky barrier diodes are described. The conductivity modulation was observed, for the first time, in metal/HOMOCVD a-Si:H contacts. Its effect on capacitance-voltage characteristics are discussed. The minority-carrier injection ratio is estimated from current-voltage characteristics as a function of total forward current for different metals. It is shown that these effects cannot be neglected in the interpretation of the AC and DC measurements. The caution, therefore, must be taken when using a-Si:H diodes structures to obtain the fundamental physical parameters characterizing either the interface or bulk properties of amorphous semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hydrogenated Amorphous Silicon, in Semiconductors and Semimetals, vol. 21, Part A-D, ed. Pankove, J. I., Academic Press Inc., New York, 1984.Google Scholar
2. Scott, B. A., Plecenick, R. M. and Simonyi, E. E., Appl. Phys. Lett. 39, 73 (1981).CrossRefGoogle Scholar
3. Kanai, Y., J. Phys. Soc. Japan 10, 718 (1955).CrossRefGoogle Scholar
4. Misawa, T., J. Phys. Soc. Japan 12, 882 (1957).CrossRefGoogle Scholar
5. Kanicki, J., Aboelfotoh, M. Osama and Bauhofer, W., Proc. Int. Conf. Phys. Sem., San Francisco, USA, August 6-10, 1984.Google Scholar
6. Chen, I. and Lee, S., Appl. Phys. Lett. 40, 487 (1982).CrossRefGoogle Scholar
7. Archibald, I.W. and Abram, R. A., Phil. Mag. B 48, III (1984).Google Scholar
8. Rhoderick, E. H., Metal-Semiconductor Contacts, Clarendon Press, Oxford, 1980.Google Scholar
9. MacDonald, J. R., Solid-St. Electron. 5, 11 (1962).CrossRefGoogle Scholar
10. Konstantinov, O. V. and Mezrin, O. A., Soy. Phys. Semicond. 17, 193 (1983).Google Scholar
11. Green, M. A. and Shewchum, J., J. Appl. Phys. 46, 5185 (1975).CrossRefGoogle Scholar
12. Buturla, E. M. and Cottrell, P. E., FIELDAY-Finite Element Device Analysis Program, IBM TR 19.0356 (1975).Google Scholar
13. Scharfetter, D. L., Solid-St. Electron. 8, 299 (1965).CrossRefGoogle Scholar
14. Yu, A. Y. C. and Snow, E., Solid-St. Electron. 12, 155 (1969).CrossRefGoogle Scholar
15. Manifacier, J. C. and Henish, H. K., Phys. Rev. B 17, 2640 (1978).CrossRefGoogle Scholar
16. Kanicki, J., Ramson, C. M., Bauhofer, W., Chappell, T. I. and Scott, B. A., J. Non-Cryst. Solids 66 51 (1984).CrossRefGoogle Scholar
17. Stafeev, V. I., Soy. Phys.-Tech. Phys. 3, 1502 (1958).Google Scholar