Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T18:03:42.322Z Has data issue: false hasContentIssue false

Mineralogical, Textural and Compositional Data on the Alteration of Basaltic Glass From Kilauea, Hawaii to 300°C: Insights to the Corrosion of a Borosilicate Glass Waste-Form

Published online by Cambridge University Press:  28 February 2011

David K. Smith*
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
Get access

Abstract

Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300°C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surface reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150°C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abrajano, T.A., Bates, J.K., Woodland, A.B., Bradley, J.P. and Bourcier, W.L., Clays and Clay Minerals, 38, 537 (1990).CrossRefGoogle Scholar
2. Waibel, A., Geothermal Res. Council, Trans., 7, 205 (1983).Google Scholar
3. Stone, C. and Fan, P., Geology, 6, 401 (1978).Google Scholar
4. Garcia, M.O., Muenow, D.W., Aggrey, K.E. and O’Neil, J.R., Jour. Geophy. Res., 94, 10525 (1989).Google Scholar
5. Thomas, D.M., U.S. Geol. Surv. Prof. Paper 1350. 1507 (1987).Google Scholar
6. Gerlach, D.C., West, H.B., Thomas, D.M., Delanoy, GA and Ikemoto, B.N., EOS, 70, 1397 (1989).Google Scholar
7. Velde, B., Clay Minerals, 19, 243 (1984).Google Scholar
8. Flintoff, J.F. and Harker, A.B., Mat. Res. Soc. Symp. Proa, 44, 147 (1985).CrossRefGoogle Scholar
9. Zhou, Z. and , W.S., Mat. Res. Soc. Symp. Proc, 112, 725 (1988).Google Scholar
10. Arai, T., Yusa, Y., Sasaki, N., Tsunoda, N. and Takano, H., Mat. Res. Soc. Symp. Proc., 127 73 (1989).Google Scholar
11. Byers, C.D., Jercinovic, M.J., Ewing, R.C. and Keil, K., Mat. Res. Soc. Symp. Proc., 44, 583 (1985).Google Scholar
12. Scheidegger, K.F. and Stakes, D.S., Earth and Plan. Sci. Letters, 36, 413 (1977).CrossRefGoogle Scholar
13. Staudigel, H. and Hart, S.R., Geochim. Cosmochim. Acta, 47, 337 (1983).Google Scholar
14. Brindley, G.W. and Brown, G. eds., Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London (1980).Google Scholar
15. Seyfried, W.E. Jr. and Bischoff, J.L., Geochim. Cosmochim. Acta, 43, 1937 (1979).CrossRefGoogle Scholar
16. Byers, CD., Jercinovic, M.J. and Ewing, R.C., Argonne National Laboratory, NUREG/CR-4842, ANL-86-46, 150p (1987).Google Scholar
17. Bettison, L.A. and Schiffman, P., Am. Min., 73, 62 (1988).Google Scholar
18. Bailey, S.W., Hydrous Phvilosilicates. Mineralogical Society of America, Reviews of Mineralogy, edited by Bailey, S.W., 19, 347 (1988).CrossRefGoogle Scholar
19. Leake, B.E., Can. Mineral., 16, 501 (1978).Google Scholar
20. Laird, J., in Amphiboles: Petrology and Experimental Phase Relations. Mineralogical Society of America, Reviews of Mineralogy, Veblen, D.R. and Ribbe, P.H. eds., 9B, 113, (1982).Google Scholar
21. Turner, F.J., Metamorphic petrology - mineralogical and field aspects. McGraw-Hill, 403p, (1968).Google Scholar
22. Wawak, B.E. and Campbell, W.L., Scanning Electron Microscopy, IV, 1323 (1986).Google Scholar
23. Bourcier, W.L., Peifer, D.W., Knauss, K.G., McKeegan, K.D. and Smith, D.K., Mat. Res. Soc. Symp. Proc, 176, 209 (1990).Google Scholar
24. Bates, J.K. (private communication).Google Scholar
25. Ewing, R.C. and Jercinovic, M.J., Mat. Res. Soc Symp. Proc, 84, 67 (1987).Google Scholar
26. Cowan, R. and Ewing, R.C., Mat. Res. Soc. Symp. Proc, 127, 49 (1989).CrossRefGoogle Scholar
27. Grambow, B., Jercinovic, M.J., Ewing, R.C. and Byers, CD., Mat. Res. Soc Symp. Proc., 50, 263 (1985).CrossRefGoogle Scholar
28. Malow, G. and Ewing, R.C., Mat. Res. Soc. Symp. Proc, 3, 315 (1980).Google Scholar
29. Lutze, W., Malow, G., Ewing, R.C., Jerconovic, M.J. and Keil, K., Nature, 314, 252 (1985).CrossRefGoogle Scholar
30. Knauss, KG., Bourcier, W.L., McKeegan, K.D., Merzbacher, C.I., Nguyen, S.N., Ryerson, F.J., Smith, D.K., Weed, H.C., and Newton, Leon, Mat. Res. Soc. Symp. Proc., 176 371 (1990).Google Scholar
31. West, H.B. (private communication).Google Scholar