Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T18:42:49.528Z Has data issue: false hasContentIssue false

Million-Line Failure Distributions for Narrow Interconnects

Published online by Cambridge University Press:  10 February 2011

M. C. Bartelt
Affiliation:
Computational Materials Science Department
J. J. Hoyt
Affiliation:
Computational Materials Science Department
N. C. Bartelt
Affiliation:
Computational Materials Science Department
J. J. Dike
Affiliation:
Solid and Material Mechanics Department, Sandia National Laboratories, Livermore, CA 94550
W. G. Wolfer
Affiliation:
Computational Materials Science Department
Get access

Abstract

We examine the distribution of failure times in a simple and computationally efficient, yet reasonably authentic, model of interconnect reliability that allows consideration of statistically significant samples. The model includes an approximate description of the distribution of grain sizes and texture in narrow interconnects, an effective treatment of stress evolution associated with mass transport along grain boundaries, and local relaxation of stresses due to void formation. Failure time distributions for populations of idealized structures are analyzed to aid in interpretation of model behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Black, J.R., IEEE: New York (1967) p.148; IEEE Trans. Elect. Devices ED-16 (1969) p. 338.Google Scholar
2.Yue, J.T., Funsten, W.P., Taylor, R.V., IEEE: New York (1985) p. 126.Google Scholar
3.Verbruggen, A.H.t, IBM J. Res. Develop. 32 (1988) p.465; C.-K. Hu et al., ibid. 39 (1995) p.465; P.S. Ho and T. Kwok, Rep. Prog. Phys. 52 (1989) p.301; A. Scorzoni et al., Mat. Sci. Rep. 7 (1991) p. 143; H. Okabayashi, Mater. Sci. Eng.5 (1993) R11; M.D. Thouless, Annu. Rev. Mater. Sci. 25 (1995) p.69; T.D. Sullivan, ibid. 26 (1996) p. 333.Google Scholar
4.Smith, C.S., Metal Interfaces (Am. Soc. Metals, 1952), p.65; H.V. Atkinson, Acta Metall. 36 (1988) p. 469; J.A. Glazier and D. Weaire, J. Phys.: Condensed Matter 4 (1992) p.1867; N. Rivier, in Disorder and Granular Media, edited by D. Bideau and A. Hansen (Elsevier, 1993); see also various contributions in Modeling of Coarsening and Grain Growth, edited by S.P. Marsh and C.S. Pande (The Minerals, Metals & Materials Society, Warrendale, PA 1993).Google Scholar
5.Feltham, P., Acta Metall. 5 (1957) p.97; N.P. Louat, ibid. 22 (1974) p.721; S.K. Kurtz and F.M.A. Carpay,. App. Phys. 51 (1980) p.5725; 51 (1980) p.5745; F.N. Rhines and B.R. Patterson, Metall. Trans. 13A (1982) p.985; M.P. Anderson et al., Acta Metall. 32 (1984) p.783; 33 (1985) p.2233; C.S. Pande, ibid. 35 (1987) p.2671; 36 (1988) p.2161; J.E. Palmer et al., J. Appl. Phys. 62 (1987) p.2492; C.S. Pande and E. Dantsker, Acta Met. 38 (1990) p.945; H.J. Frost, C.V. Thompson, and D.T.Walton, ibid. 38 (1990) p. 14 5 5.Google Scholar
6.Fundamentals of Grain and Interphase Boundary Diffusion, Kaur, I., Mishin, Y., and Gust, W. (John Wiley, 1995); Interfaces in Crystalline Materials, A.P. Sutton and R.W. Balluffi (Oxford Science Publishers, 1996).Google Scholar
7.Korhonen, M.A., Borgesen, P., Tu, K.N., and Li, C.-Y., J. Appl. Phys. 73, p. 3790 (1993).Google Scholar
8.Niehof, J., de Graaff, H.C., and Verwey, J.F., MRS Proc. 309 (1993) p.295; U.E. Möckl, J.R. Loyd, and E. Arzt, ibid. 309 (1993) p.301; S. Shingubara et al., MRS Proc. 338 (1994) p.441; G.B. Alers, A.S. Oates, and N.L Beverly, Appl. Phys. Lett. 66 (1995) p.3600; J.R. Kraayeveld et al., ibid. 67 (1995) p. 1226.Google Scholar
9.Shatzkes, M. and Lloyd, J.R., J. Appl. Phys. 59 (1986) p.3890; L.P. Muray, L.C. Rathbun, and E.D. Wolf, Appl. Phys. Lett. 53 (1988) p.1414; J. Cho and C. V. Thompson, ibid. 54 (1989) p.2577; J.R. Lloyd, SPIE 1596 (1991) p.106; J.R. Lloyd and J. Kitchin, J. Appl. Phys. 69 (1991) p. 2117; J. Kitchin and J.R. Lloyd, MRS 225 (1991) p. 27.Google Scholar
10.Attardo, M.J., Rutledge, R., and Jack, R.C., J. Appl. Phys. 42 (1971) p.4343.Google Scholar
11.Anderson, P.W.et al., Phys. Rev. B 22 (1980) p.3519; A. Douglas Stone, J.D. Joannopoulos, and D.J. Chadi, ibid. 24 (1981) p.5583; S. Havlin, J.E. Kiefer, and G.H. Weiss, ibid. 38 (1988) p.4761; L. Baker, A.J. Giancola, and F. Allahdadi, J. Appl. Phys. 72 (1992) p.2724; O. Sotolongo-Costa et al., Phys. Rev. Lett. 76 (1992) p.42; R. Delannay, G. Le Caër, and R. Botet, J. Phys. A 29 (1996) p.6693; T. Antal and Z. Rácz, Phys. Rev. E 54 (1996) p. 2 25 6.Google Scholar
12.Filipi, R.G., Biery, G.A., and Wachnik, R.A., Appl. Phys. Lett. 66 (1995) p. 1897.Google Scholar
13.Montroll, E.W. and Shlesinger, M.F., J. Stat. Phys. 32 (1983) p. 209.Google Scholar