Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-06T00:09:07.926Z Has data issue: false hasContentIssue false

Miicrostructural Evolutiion Duriing Sinteriing

Published online by Cambridge University Press:  25 February 2011

R. A. Page
Affiliation:
Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238
Y. M. Pan
Affiliation:
Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238
Get access

Abstract

Small-angle scattering techniques have been used in a number of studies to characterize pore evolution in ceramic compacts. Parameters characterizing the pore distribution, such as total pore surface area, pore size, and pore density, have been measured through both intermediate and final stage sintering. A review of these results indicates that pore sizes were generally found to remain constant during intermediate-stage sintering; supporting a topological decay model of sintering. Pore sizes generally increased and the size distribution broadened during final-stage sintering. The scattering results also suggest the presence of a unique pore surface area versus density curve.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuczynski, G.C., Trans. AIME, 185, 169 (1949).Google Scholar
2. Coble, R.L., J. Am. Ceram. Soc., 41, 55 (1958).Google Scholar
3. Johnson, D.L., J. Appl. Phys., 40, 192 (1969); J. Am. Ceram. Soc., 53, 574 (1970).CrossRefGoogle Scholar
4. Eadie, R.L., Weatherly, G.C., and Aust, K.T., Acta Metall., 26, 759 (1978).Google Scholar
5. Arzt, E., Acta Metall., 30, 1883 (1982).Google Scholar
6. Ross, J.W., Miller, W.A., and Weatherly, G.C., Acta Metall., 20, 203 (1982).CrossRefGoogle Scholar
7. Kuczynski, G.C., Sintering and Related Phenomena (Plenum Press, New York, 1975), p. 217.Google Scholar
8. Glodeanu, F., Nicolaescu, I.V., and Aszodi, A.M., J. Nucl. Mater., 114, 98 (1983).Google Scholar
9. Hassold, G.N., Chen, I.-W., and Srolovitz, D.J., J. Am. Ceram. Soc., 23, 2857 (1990).Google Scholar
10. Kostorz, G., Treatise on Materials Science and Technology. Vol. 14. Neutron Scattering (Academic Press, New York, 1979), p. 227.Google Scholar
11. Weertman, J.R., in Nondestructive Evaluation: Microstructural Characterization and Reliability Strategies, edited by Buck, O. and Wolf, S.M. (AIME, New York, 1981), p. 147.Google Scholar
12. Guinier, A., Ann. Phys. Paris,. 12, 161 (1939).CrossRefGoogle Scholar
13. Porod, G., Kolloid Z., 125, 51 (1952).CrossRefGoogle Scholar
14. Barker, J.G. and Weertman, J.R., Scripta Metall., 24, 227 (1990).CrossRefGoogle Scholar
15. Berk, N.F. and Hardman-Rhyne, K.A., J. Appl. Cryst., 18, 467 (1985); Physica 136B, 218 (1986).CrossRefGoogle Scholar
16. Page, R.A., Spooner, S., Sanderson, W.B., and Johnson, D.L., J. Am. Ceram. Soc., 71, 1125 (1988).Google Scholar
17. Hardman-Rhyne, K.A. and Berk, N.F., J. Am. Ceram. Soc., 69, C285 (1986).CrossRefGoogle Scholar
18. Hardman-Rhyne, K.A., Frase, K.A., and Berk, N.F., Physica, 136B, 223 (1986).Google Scholar
19. Krueger, S., Long, G.G., and Page, R.A., Mater. Res. Soc. Sym. Proc., 166, 61 (1990); Acta Cryst. (Part A), (in press).Google Scholar
20. Long, G.G., Krueger, S., and Page, R.A., J. Am. Ceram. Soc., 74, 1578 (1991).CrossRefGoogle Scholar
21. Long, G.G., Krueger, S., Gerhardt, R.A., and Page, R. A., J. Mater. Res. (in press).Google Scholar
22. Long, G.G. and Krueger, S., J. Appl. Cryst., 22, 539 (1989).Google Scholar
23. Krueger, S., Long, G.G., Black, D.R., Minor, D., Jemian, P.R., Nieman, G.W., and Page, R.A., J. Am. Ceram. Soc., (in press).Google Scholar
24. Wagner, W., Averback, R.S., Hahn, H., Petry, W. and Wiedenman, A., J. Mater. Res., 6, 2193 (1991).Google Scholar
25. Page, R.A., Pan, Y.M., Blanchard, C.R., and Spooner, S., unpublished research.Google Scholar
26. Kimura, T., Matsuda, Y., Oda, M., and Yamaguchi, T., Ceram. Int., 13, 27 (1987).Google Scholar
27. Occhionero, M.A. and Halloran, J.W., in Sintering and Heterogeneous Catalysis, edited by Kuczynksi, G.C., Miller, A.E., and Sargent, G.A. (Plenum Press, New York, 1984), p. 89.Google Scholar
28. Whittemore, O.J. Jr. and Sipe, J.J., Powder Technol., 9, 159 (1974).Google Scholar
29. Asaga, K.A., Daimon, M., Kondo, R., and Hamano, K., in Factors in Densification and Sinterine of Oxide and Non-Oxide Ceramics, edited by Somiya, S. and Saito, S. (Association for Science Documents Information, Tokyo, 1979), p. 136.Google Scholar
30. DeHoff, R.T., Rummel, R.A., LaBuff, H.P., and Rhines, F.N., in Modem Developments in Powder Metallurgy. Vol. 1, edited by Hausner, H.H. (Plenum Press, New York, 1966), p. 310.Google Scholar
31. Rhines, F.N. and DeHoff, R.T., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C., Miller, A.E., and Sargent, G.A. (Plenum Press, New York, 1984), p. 49.Google Scholar
32. Shaw, N.J. and Brook, R.J., J. Am. Ceram. Soc., 69, 107 (1986).Google Scholar