Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-05T15:31:28.764Z Has data issue: false hasContentIssue false

Microstructure, Optoelectronic Properties and Saturated Defect Density of A-SL:H Prepared in VHF-Glow Discharge Using AR and XE Dilution

Published online by Cambridge University Press:  21 February 2011

U. Kroll
Affiliation:
Insititute of Microtechnology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
F. Finger
Affiliation:
Now at: Forschungszentrum Jülich, D-5170 Jülich, FRG
J. Dutta
Affiliation:
Now at: LPICM-Ecole Polytechnique, F-91128 Palaiseau, France
H. Keppner
Affiliation:
Insititute of Microtechnology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
A. Shah
Affiliation:
Insititute of Microtechnology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
A. Howling
Affiliation:
Centre de Recherches en Physiques des Plasmas; Ecole Polytechnique Fédéral, CH-1007 Lausanne, Switzerland
J.-L- Dorier
Affiliation:
Centre de Recherches en Physiques des Plasmas; Ecole Polytechnique Fédéral, CH-1007 Lausanne, Switzerland
Ch. Hollenstein
Affiliation:
Centre de Recherches en Physiques des Plasmas; Ecole Polytechnique Fédéral, CH-1007 Lausanne, Switzerland
Get access

Abstract

Films were prepared under argon and xenon dilution with silane concentrations ranging from 3 to 100% using the very high frequency glow discharge (VHF-GD) technique. The H-content and the microstructure were determined by IR-spectroscopy. A surface profiler was used to measure the stress and thickness of the films. The surface roughness of the films was evaluated by the UV-light reflectance loss. The samples were further characterized by dark- and photoconductivity, by CPM and by PDS, both in annealed and light-soaked state.

Down to silane concentrations of about 10–20% film properties change only little; however, for both dilution series the microstructure parameter shows a minimum and the internal stress a maximum near 20% silane concentration. At still higher rare gas dilution the film properties change drastically. Surprisingly the photoconductivity remains almost constant for all gas dilutions. It is shown how these changes in the film properties are linked with the light induced degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knights, J.C., Lujan, R.A., Rosenblum, M.P., Street, R.A., Bieglesen, D.K. and Reimer, J.A., Appl. Phys. Lett. 38 (5), 331 (1981)CrossRefGoogle Scholar
2. Matsuda, A., Mashima, S., Hasezaki, K., Suzuki, A. and Yamasaki, S. Appl. Phys. Lett. 58 (22), 2494 (1991)CrossRefGoogle Scholar
3. Dutta, J., Hasezaki, K., Mashima, S., McElheny, P.J., Suzuki, A., Ganguly, G. and Matsuda, A. submitted to Jap. J. Appl. Phys. Lett.Google Scholar
4. Howling, A.A., Dorier, J.-L., Hollenstein, Ch., Kroll, U. and Finger, F., accepted for publication in J. Vac. Sci. Technol. A, June 1992 Google Scholar
5. Godyak, V.A. and Piejak, R.B., J. Vac. Sci. Technol. A 8 (5), 3833 (1990)CrossRefGoogle Scholar
6. Finger, F., Viret, V., Shah, A., Tang, X.-M., Weber, J. and Beyer, W., Mat. Res. Soc. Symp. Proc. 192, 583 (1990)CrossRefGoogle Scholar
7. Finger, F., Kroll, U., Viret, V., Shah, A., Beyer, W., Tang, X.-M., Weber, J., Howling, A. and Hollenstein, Ch. accepted for publication in J. Appl. Phys., June 1992 Google Scholar
8. Stutzmann, M., Appl. Phys. Lett. 47 (1), 21 (1985)CrossRefGoogle Scholar
9. Cunningham, L.J. and Braundmeier, A.J., Phys. Rev. B14 (2), 479 (1976)CrossRefGoogle Scholar
10. Keppner, H., Fath, P., Fischer, D., Pellaton, N., Mettler, A., Tscharner, R. and Shah, A. Proc. of the 6th PVSEC, New Deli, 615 (1992)Google Scholar
11. Windischmann, H., J. Vac. Sci. Technol. A9 (4), 2431 (1991)CrossRefGoogle Scholar
12. Harbison, J.P., Williams, A. J. and Lang, D.V., J. Appl. Phys. 55 (4), 946 (1984)CrossRefGoogle Scholar
13. Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B 16 (8), 3556 (1977)CrossRefGoogle Scholar
14. Bhattacharya, E. and Mahan, A.H., Appl. Phys. Lett. 52 (19), 1587 (1988)CrossRefGoogle Scholar
15. Cardona, M., phys. stat. sol. (b) 118, 463 (1983)CrossRefGoogle Scholar
16. Curtins, H. and Veprek, S., Solid State Comm. 54 (4), 215 (1986)CrossRefGoogle Scholar
17. Beyer, W. and Hoheisel, B., Solid State Comm. 47 (7), 573 (1983)CrossRefGoogle Scholar
18. Wyrsch, N., Finger, F., McMahon, T.J. and Vanecek, , J. Non-Cryst. Solids 137&138, 347 (1983)Google Scholar
19. Ganguly, G., Suzuki, A., Yamasaki, S., Nomoto, K. and Matsuda, A., J. Appl. Phys. 68 (7), 3738 (1990)CrossRefGoogle Scholar