Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T01:05:18.902Z Has data issue: false hasContentIssue false

The Microstructure of Sputtered Co-Cr Magnetic Recording Media

Published online by Cambridge University Press:  15 February 2011

Astrid Pundt
Affiliation:
Institut für Metallphysik, Hospitalstraße 3-7, D-37073 Göttingen, Germany
Ralf Busch
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125;
Carsten Michaelsen
Affiliation:
Institut fiir Werkstofforschung, GKSS-Forschungszentrum, D - 21502 Geesthacht, Germany
Get access

Abstract

With the increase of magnetic storage capacity in view, sub grain decomposition in Co-Cr magnetic recording material is examined with the field ion microscope / atom probe (FIM/AP) on a nanometer scale. Concentration variations in sputtered 50 nm Co-20at% Cr and 3 μm Co-22at% Cr films are analysed. Layers with up to 50 nm thickness are sputtered directly onto tungsten FIM tips. FTM-tips of layers with up to 3 μm thickness are prepared by a lithography and etching technique. The measurements show decomposition on the scale of a few nanometers. The concentration amplitudes vary between 11 at% Cr and 42 at% Cr within 50 nm films. Within 3 μm films the concentration varies from about 10 at% Cr to 30 at% Cr. Furthermore, at grain boundaries 3–4 nm precipitates of about 40 at% Cr are observed. The observed concentrations depend on substrate temperature. The compositional inhomogeneity can be explained by a miscibihty gap in the hep phase solid solution which is induced by magnetism at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iwasaki, S., Ouchi, K., IEEE Trans.Magn., MAG-14(5), 849 (1978)CrossRefGoogle Scholar
[2] Fisher, R.D., Au-Yeung, V.S., Sabo, B.B., IEEE Trans.Magn., MAG-20(5), 806 (1984)CrossRefGoogle Scholar
[3] Kobayashi, K., Ishida, G., J. Appl. Phys.52(3), 2453 (1981)CrossRefGoogle Scholar
[4] Maeda, Y., Hirono, S., Asahi, M., Jap.J.Appl.Phys. 24(12), L951 (1985)CrossRefGoogle Scholar
[5] Maeda, Y., Takahashi, M., IEEE Trans. Magn., MAG-24(6), 3012 (1988)CrossRefGoogle Scholar
[6] Parker, F.T., Oesterreicher, H., Fullerton, E., J. Appl. Phys.66(12), 5988 (1989)CrossRefGoogle Scholar
[7] Yoshida, K., Kakibayashi, H., Yasuoka, H., J.Appl.Phys.68(2), 705 (1990)CrossRefGoogle Scholar
[8] Geber, G.P., Al-Kassab, T., Isheim, D., Busch, R., Haasen, P., Z. Metallkd. 83, 449 (1992)Google Scholar
[9] Busch, R., Schneider, S. (these proceedings)Google Scholar
[10] Hasegawa, N., Hono, K., Okano, R., Fujimori, H., Sakurai, T., Appl.Surf.Sci.67(1–4), 407 (1993)CrossRefGoogle Scholar
[11] Wagner, R., Field-Ion Microscopy in Materials Science, in: Crystals, Vol.6, edited by Freyhardt, HC., Springer Verlag, Berlin 1982 CrossRefGoogle Scholar
[12] Kreyszig, E., Statistische Methoden und ihre Anwendungen. Vandenhoeck & Ruprecht Verlag Gtittingen 1965 Google Scholar
[13] Pundt, A., Isheim, D. (in preparation)Google Scholar
[14] Hasebe, M., Oikawa, K., Nishizawa, T., J. Jap. Inst. Met.,46(6), .577 (1982)CrossRefGoogle Scholar
[15] Green, A., Whittle, D.P., Stringer, J., Swindells, N., Scr. Met.7, 1079 (1973)CrossRefGoogle Scholar