Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T16:57:49.945Z Has data issue: false hasContentIssue false

Microstructure Evolution of Amorphous Si1-xGex Thin Films

Published online by Cambridge University Press:  10 February 2011

H. Y. Tong
Affiliation:
School of Engineering, University of California, Irvine, CA 92697–2575, USA
Q. Jiang
Affiliation:
School of Engineering, University of California, Irvine, CA 92697–2575, USA
D. Hsu
Affiliation:
School of Engineering, University of California, Irvine, CA 92697–2575, USA
T. J. King
Affiliation:
Department of Electrical Engineering & Computer Science, University of California Berkeley, CA 94720–1770, USA
F. G. Shi
Affiliation:
School of Engineering, University of California, Irvine, CA 92697–2575, USA
Get access

Abstract

The composition dependence of the nucleation free energy barrier W* in amorphous Si1-xGex thin films is investigated. Within the composition range of x = 0.25 ∼ 0.52, the nucleation free energy barrier exhibits a maximum, which is in a good agreement with our theoretical analysis. The results are significant for processing polycrystalline SiGe thin films with desirable microstructures for thin film transistor applications. In addition, the incubation time of crystallization of amorphous Si1-xGex (x=0.5) thin films is investigated as a function of temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Song, J. H. and Im, J. S., Mat. Res. Soc. Symp. Proc., 321, 307 (1994).Google Scholar
[2]. Tsai, J. A., Tang, A. J., Noguchi, T. and Reif, R., J. Elee. Soc., 142, 3220 (1995).Google Scholar
[3]. Tsai, J. A. and Reif, R., Appl. Phys. Letters, 66, 1809 (1995).Google Scholar
[4]. Krishnan, S., Chaudhry, M. I. and Babu, S. V., J. Mater. Res., 10, 1884 (1995).Google Scholar
[5]. Hwang, C. W., Ryu, M. K., Kim, K. B., Lee, S. C. and Kim, C. S., J. Appl. Phys., 77, 3042 (1995).Google Scholar
[6]. Edelman, F., Weil, R., Werner, P., Reiche, M. and Beyer, W., Phys. Stat. Sol., 150, 407 (1995).Google Scholar
[7]. King, T. J. and Saraswat, K., J. Electronchem. Soc., 141, 2235 (1994).Google Scholar
[8]. King, T. J. and Saraswat, K. C., IEEE Tran. Elec. Devices, 41, 1581 (1994).Google Scholar
[9]. Jiang, H. and Elliman, R. G., J. Appl. Phys., 80, 3110 (1996).Google Scholar
[10]. King, T. J. and Saraswat, K. C., International Electron Devices Meeting, Tech Dig., 91, 567(1991).Google Scholar
[11]. King, T. J., Saraswat, K. C. and Pfiester, J. R., IEEE Electron Dev. Lett. 12, 584 (1991).Google Scholar
[12]. Dunstan, D. J., Semicond. Sci. Technol., 6, A76 (1991);Google Scholar
Hull, R., Bean, J. C., Higashi, G. S., Green, M. L., Peticolas, L., Bahnck, D. and Brasen, D., Appl. phys. Lett., 60, 1468 (1992).Google Scholar
[13]. Kazmerski, L. L., Internat. Mater. Rev., 34, 185 (1989).Google Scholar
[14]. Tsai, J. A., Tang, A. J. and Reif, R., Mater. Res. Soc. Symp. Proc., 343, 679 (1994).Google Scholar
[15]. Edelman, F., Komem, Y., Werner, P., Heydenreich, J. and Iyer, S. S., Thin Solid films, 266, 212(1995).Google Scholar
[16]. Kringhøj, P., Elliman, R. G., Fyhn, M., Shiryaev, S. Y. and Larsen, A. N., Nuclear Instruments and Methods in Phys. Res., B, 106, 346 (1995).Google Scholar
[17]. Kringhøj, P. and Elliman, R. G., Phys. Rev. Letters, 73, 858 (1994).Google Scholar
[18]. Bendayan, M., Beserman, R., Edelman, F., Komem, Y. and Iyer, S. S., Appl. Surf. Sci., 65/66, 489(1993).Google Scholar
[19]. Edelman, F., Komem, Y., Iyer, S. S. and Heydenreich, J. and Baither, D., Thin Solid films, 222, 57(1992).Google Scholar
[20]. Hasegawa, S., Yazaki, S. and Shimizu, T., J. Non-Cryst. Solids, 27, 215 (1978).Google Scholar
[21]. Shi, F. G. and Tu, K. N., Phys. Rev. Letters, 74, 4476 (1995).Google Scholar
[22]. Shi, F. G., Tong, H. Y. and Ayers, J. D., Appl. phys. Lett., 67, 350 (1995).Google Scholar
[23]. Tong, H. Y., King, T. J. and Shi, F. G., Thin Solid films, 290–291, 464 (1996).Google Scholar
[24]. Shi, F. G., Scr. Metall. Mater., 31, 1227 (1994).Google Scholar
[25]. Shi, F. G., J. Appl. Phys., 167, 149 (1994).Google Scholar
[26]. Shi, F. G. and Seinfeld, J. H., Mater. Chem. Phys., 37, 1 (1994).Google Scholar
[27]. Ranganathan, S. and von Heimendahl, M., J. Mater. Sci., 16, 2404 (1981).Google Scholar
[28]. Shi, G. and Seinfeld, J. H., J. Mater. Res., 6, 2091 (1991).Google Scholar
[29]. Weidmann, M. R. and Newman, K. E., Phys. Rev., B, 45, 8388 (1992).Google Scholar
[30]. Thompson, C. V. and Spaepen, F., Acta Metall., 27, 1855 (1979).Google Scholar