Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:15:46.290Z Has data issue: false hasContentIssue false

Microstructure and Thermal Stability of Transition Metal Nitrides and Borides on GaN

Published online by Cambridge University Press:  15 March 2011

Jacek Jasiński
Affiliation:
Lawrence Berkeley National Laboratory, Materials Science Division, Berkeley, CA Institute of Experimental Physics, Warsaw University, Hoza 69, Warsaw, Poland
Eliana Kamińska
Affiliation:
Institute of Electron Technology, Al. Lotnikow 46, Warsaw, Poland
Anna Piotrowska
Affiliation:
Institute of Electron Technology, Al. Lotnikow 46, Warsaw, Poland
Adam Barcz
Affiliation:
Institute of Electron Technology, Al. Lotnikow 46, Warsaw, Poland Institute of Physics, PAS, Al. Lotnikow 46, Warsaw, Poland
Marcin Zieliński
Affiliation:
Institute of Physics, PAS, Al. Lotnikow 46, Warsaw, Poland
Get access

Abstract

Microstructure and thermal stability of ZrN/ZrB2 bilayer deposited on GaN have been studied using transmission electron microscopy methods (TEM) and secondary ion mass spectrometry (SIMS). It has been demonstrated that annealing of the contact structure at 1100°C in N2 atmosphere does not lead to any observable metal/semiconductor interaction. In contrast, a failure of the integrity of ZrN/ZrB2 metallization at 800°C, when the heat treatment is performed in O2 ambient has been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, L., Davis, R. F., Kim, M. J., Carpenter, R. W., Huang, Y., J. Mater. Sci. 11, 2257 (1996).Google Scholar
2. Cole, M. W., Eckart, D. W., Han, W. Y., Pfeffer, R. L., Monahan, T., Ren, F., Yuan, C., Stall, R. A., Pearton, S. J., Li, Y., Lu, Y., J. Appl. Phys. 80, 278 (1996).Google Scholar
3. Shiojima, K., McInturff, D. T., Woodall, J. M., Grudowski, P. A., Eiting, C. J., Dupuis, R. D., J. Electron. Mat. 28, 228 (1999).Google Scholar
4. Guo, J. D., Pan, F. M., Feng, M. S., Guo, R. J., Chou, P. F., Chang, C.Y., J. Appl. Phys. 80, 2686 (1996).Google Scholar
5. Duxtad, K. J., Haller, E. E., Yu, K. M., Hirsh, M. T., Imler, W. M., Steigerwald, D. A., Ponce, F. A., Romano, L. T., Mat. Res. Soc. Symp. Proc. Vol.449, 1049 (1997).Google Scholar
6. Kaminska, E., Piotrowska, A., Guziewicz, M., Kasjaniuk, S., Barcz, A., Dynowska, E., Bremser, M. D., Nam, O. H., Davis, R. F., Mat. Res. Soc. Symp. Proc. Vol.449, 1055 (1997).Google Scholar
7. Koide, Y., Maeda, T., Kawakami, T., Fujita, S., Uemura, T., Shibata, N., Murakami, M., J. Electron. Mat. 28, 341 (1999).Google Scholar
8. Ho, J. K., Jong, C. S., Chiu, C. C., Huang, C. N., Chen, C. Y., Shih, K. K., Appl. Phys. Lett. 74, 1275 (1999).Google Scholar