Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-03T01:10:49.625Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of Nanolayered TiN/Cu Thin Films

Published online by Cambridge University Press:  10 February 2011

Y.Y. Tse
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil cedex, France
G. Abadias
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil cedex, France
A. Michel
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil cedex, France
C. Tromas
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil cedex, France
M. Jaouen
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, SP2MI, Téléport 2, BP 30179, 86962 Futuroscope-Chasseneuil cedex, France
Get access

Abstract

Structural and mechanical properties of nanoscale TiN/Cu multilayers grown by dual ion beam sputtering with bilayer periods (A) ranging from 2.5 to 50 nm were studied. Both low-angle and high-angle X-ray diffraction (XRD) experiments have been employed to globally characterize the multilayers structure. The microstructure of the multilayers has been scrutinized by high resolution transmission electron microscopy (HRTEM). The effects of interface and bilayer thickness on hardness were investigated by depth-sensing nanoindentation technique. A small hardness increase with decreasing periodicity of the multilayers has been observed. The relationship between the hc/T ratio (hc is the contact depth and T is the total film thickness) and the hardness is established. The correlation between the microstructure and hardness is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Musil, J., Surf. Coat. Techn. 125, 322 (2000).Google Scholar
2. Sproul, W. D., Science 273, 889 (1996).Google Scholar
3. Geisler, H., Schweitz, K. O., Chevallier, J. and Bottiger, J., Phil. Mag. A, 79, 485 (1999).Google Scholar
4. Xu, J. H., Kamiko, M., Zhou, Y. M., Yamaoto, R., Li, G. Y. and Gu, M. Y., J. Appl. Phys. 89, 3674 (2001).Google Scholar
5. Chu, X. and Barnett, S. A., J. Appl. Phys. 77, 4403 (1995).Google Scholar
6. Fullertron, E. E., Schuller, I. K., Vanderstraeten, H. and Bruyneraede, Y., Phys. Rev. B 45, 9292 (1992).Google Scholar
7. Abadias, G., Tse, Y. Y., Michel, A., Jaouen, C. and Jaouen, M., Thin Solid Films (in press).Google Scholar
8. Abadias, G., Tse, Y. Y. and Tromas, C. (to be published).Google Scholar
9. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7 1564 (1992).Google Scholar
10. Ljungcrantz, H., Linköping University, Dissertation (1995).Google Scholar
11. Hultman, L., Shinn, M., Mirkarimi, P. B. and Barnett, S. A., J. Crystal Growth, 135, 309 (1994).Google Scholar
12. Pande, C. S., Masumura, R. A. and Hazzledine, P. M., Mater. Phys. Mech. 5, 16 (2002).Google Scholar