Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T07:47:26.919Z Has data issue: false hasContentIssue false

Micro-Raman Spectroscopy: Self-Heating Effects In Deep UV Light Emitting Diodes

Published online by Cambridge University Press:  11 February 2011

A. Sarua
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
M. Kuball
Affiliation:
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
M. J. Uren
Affiliation:
QinetiQ Ltd, Malvern WR14 3PS, United Kingdom
A. Chitnis
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
J. P. Zhang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
V. Adivarahan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
M. Shatalov
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
M. Asif Khan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208
Get access

Abstract

Ultraviolet light emitting diodes (LED) based on GaN and its ternary alloy AlGaN are key devices for applications such as solid state white lighting and chemical sensing. Ultraviolet LEDs are prone to self-heating effects, i.e., temperature rises during operation, contributing significantly to the commonly observed saturation of light output power at relatively low input currents. Rather little, however, is known about the actual device temperature of an operating ultraviolet LED. Using micro-Raman spectroscopy temperature measurements were performed as a function of input current on 325nm-Al0.18Ga0.82N/Al0.12Ga0.88N multiple quantum wells LEDs grown on sapphire substrates, flip-chip mounted on SiC for heat-sinking. Temperature maps were recorded over the active device area. Temperature rises of about 65 °C were measured at input currents as low as 50mA (at 8V) for 200 μm x 200 μm size LEDs despite flipchip mounting the devices. Temperature rises at the device edges were found to be higher than in the device center, due to combined heat sinking and current crowding effects. Finite difference heat dissipation simulations were performed and compared to the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
2. Kinoshita, A., Hirayama, H., Ainoya, M., Aoyagi, Y., and Hirata, A., Appl. Phys. Lett., 77, 175 (2000).Google Scholar
3. Otsuka, N., Tsujimura, A., Hasegawa, Y., Sugahara, G., Kume, M., and Ban, Y., Jpn. J. Appl. Phys., Part 2 39, L445 (2000).Google Scholar
4. Iwaya, M., Terao, S., Sano, T., Takanami, S., Ukai, T., Nakamura, R., Kamiyama, S., Amano, H., and Akasaki, I., Phys. Status Solidi A, 188, 117 (2001).Google Scholar
5. Adivarahan, V., Chitnis, A., Zhang, J. P., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., and Gaska, R., Appl. Phys. Lett., 79, 4240 (2001)Google Scholar
6. Khan, M. Asif, Adivarahan, V., Zhang, J. P., Chen, C., Kuokstis, E., Chitnis, A., Shatalov, M., Yang, J. W., and Simin, G., Jpn. J. Appl. Phys., Part 2 40, L1308 (2001).Google Scholar
7. Zhang, J. P., Adivarahan, V., Wang, H. M., Fareed, Q., Koukstis, E., Chitnis, A., Shatalov, M., Yang, J. W., Simin, G., Khan, M. Asif, Shur, M., and Gaska, R., Jpn. J. Appl. Phys., Part 2 40, L921 (2001).Google Scholar
8. Chitnis, A., Zhang, J. P., Adivarahan, V., Shuai, W., Sun, J., Shatalov, M., Yang, J. W., Simin, G., and Khan, M. Asif, Jpn. J. Appl. Phys., Part 2 41, L450 (2002).Google Scholar
9. Adivarahan, V., Zhang, J., Chitnis, A., Shuai, W., Sun, J., Pachipulusu, R., Shatalov, M., and Khan, M. Asif, Jpn. J. Appl. Phys., Part 2 41, L435 (2002).Google Scholar
10. Zhang, J. P., Chitnis, A., Adivarahan, V., Wu, S., Mandavilli, V., Pachipulusu, R., Shatalov, M., Simin, G., Yang, J. W., and Khan, M. Asif, to be published Appl. Phys. Lett‥Google Scholar
11. Chitnis, A., Sun, J., Mandavilli, V., Pachipulusu, R., Wu, S., Gaevski, M., Adivarahan, V., Zhang, J. P., Khan, M. Asif, Sarua, A., and Kuball, M., Appl. Phys. Lett., 81, 3491 (2002).Google Scholar
12. Kuball, M., Hayes, J. M., Uren, M. J., Martin, I., Birbeck, J. C. H., Balmer, R. S., and Hughes, B. T., IEEE Electron Device Lett., 23, 7 (2002). [INSPEC].Google Scholar
13. Demangeout, F., Groenen, J., Frandon, J., Renucci, M. A., Briot, O., Ruffenach-Clur, S., Aulombard, R. L., MRS Internet J. Nitride Semicond. Res., 2, 40 (1997).Google Scholar
14. Liu, M. S., Bursill, L. A., Prawer, S., Nugent, K. W., Tong, Y. Z. and Zhang, G. Y., Appl. Phys. Lett., 743, 3125 (1999).Google Scholar