Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-31T22:06:57.648Z Has data issue: false hasContentIssue false

Micro-Raman Characterization of Arsenic-Implanted Silicon: Interpretation of the Spectra

Published online by Cambridge University Press:  10 February 2011

James P. Lavine
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company Rochester, NY 14650–2008
David D. Tuschel
Affiliation:
Imaging Research and Advanced Development, Eastman Kodak Company Rochester, NY 14650–2017
Get access

Abstract

Raman spectra were measured on arsenic-implanted silicon with micro-Raman spectroscopy in the backscattering mode and with macro-Raman spectroscopy. A peak is observed between 505 and 510 cm−1 with 488 and 514.5 nm excitation. This peak and a related peak from the substrate at about 520 cm−1 are seen in selected regions of the implanted samples when the implant dose is above 2 × 1014 As/cm2. These features may be due to a long room temperature anneal, as they are absent in recently prepared samples. Possible explanations for the features are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braunstein, G., Tuschel, D., Chen, S., Lee, S.-T., J. Appl. Phys. 66, 3515(1989).Google Scholar
2. Balkanski, M., Morhange, J.F., Kanellis, G., J. Raman Spectros. 10, 240(1981).Google Scholar
3. Huang, X., Ninio, F., Brown, L.J., Prawer, S., J. Appl. Phys. 77, 5910(1995).Google Scholar
4. Tuschel, D.D., Lavine, J.P., Russell, J.B., in Diagnostic Techniques for Semiconductor Materials Processing II, edited by Pang, S.W., Glembocki, O.J., Pollak, F.H., Celii, F.G., and Torres, C. M. Sotomayor (Mater. Res. Soc. Symp. Proc. 406, Pittsburgh, PA, 1996) pp. 549554.Google Scholar
5. Lavine, J.P. and Tuschel, D.D., Bull. Am. Phys. Soc. 44, 1338, paper SC08–8 (1999).Google Scholar
6. Lannin, J.S., Semiconductors and Semimetals 21, Part B, Ch. 6 (1984).Google Scholar
7. Shukla, A.K. and Jain, K.P., Phys. Rev. B 34, 8950(1986).Google Scholar
8. Contreras, G., Sood, A.K., Cardona, M., Compaan, A., Solid State Commun. 49, 303(1984).Google Scholar
9. Mizoguchi, K., Harima, H., S.-i. Nakashima, Hara, T., J. Appl. Phys. 77, 3388(1995).Google Scholar
10. Nemanich, R.J. and Knights, J.C., J. Non-Crystall. Solids 35/36, 243 (1980).Google Scholar
11. Brya, W.J., Solid State Commun. 12, 253(1973).Google Scholar
12. Forman, R.A., Bell, M.I., Myers, D.R., Chandler-Horowitz, D. Japan. J. Appl. Phys. 24, L848 (1985).Google Scholar
13. Maradudin, A.A., Solid State Phys. 18, 273(1966).Google Scholar
14. Tuschel, D.D. and Lavine, J.P., this Proceedings.Google Scholar
15. Yu, P.Y. and Cardona, M., Fundamentals of Semiconductors, Physics and Materials Properties, 2nd ed. (Springer, Berlin, 1999), p. 368.Google Scholar
16. Morehead, F.F., Jr. and Crowder, B.L., in Ion Implantation, edited by Eisen, F.H. and Chadderton, L.T. (Gordon and Breach, London, 1971), pp. 2530.Google Scholar
17. Richter, H., Wang, Z.P., Ley, L., Solid State Commun. 39, 625(1981).Google Scholar
18. Zi, J., Zhang, K., Xie, X., Phys. Rev. B 55, 9263(1997).Google Scholar
19. Komem, Y. and Hall, I.W., J. Appl. Phys. 52, 6655(1981).Google Scholar
20. Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W., Sigmon, T.W., J. Appl. Phys. 48, 4234(1977).Google Scholar
21. Bourgoin, J. and Lannoo, M., Point Defects in Semiconductors H (Springer-Verlag, Berlin, 1983), ch. 9.Google Scholar
22. Vook, F.L. and Stein, H.J., Radiat. Eff. 2, 23(1969).Google Scholar