Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T02:35:05.685Z Has data issue: false hasContentIssue false

Microphase-separated block copolymer film anchored on ITO substrate with newly designed self-assembled monolayer

Published online by Cambridge University Press:  28 January 2011

Takenori Goda
Affiliation:
TOPPAN PRINTING CO., LTD. 4-2-3 Takanodaiminami, Sugito-machi, Saitama 345-8508, Japan Chemical Resources Laboratory, Tokyo Institute of Technology, R1-25 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
Shingo Hadano
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, R1-25 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
Tomokazu Iyoda
Affiliation:
Chemical Resources Laboratory, Tokyo Institute of Technology, R1-25 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
Get access

Abstract

The surface of Indium-tin-oxide (ITO) substrate was modified with a newly designed silane coupling molecule bearing azobenzene moiety. The silane coupling molecules formed self-assembled monolayer (SAM) on pretreated ITO surface. The SAM growth and coverage were quantified by contact angle measurement and X-ray photoelectron spectroscopy (XPS). The silane coupling molecules improved the adhesion between the ITO surface and an amphiphilic block copolymer (BC) thin film, which consists of poly(ethylene oxide) (PEO) and poly(methacrylate) (PMA) with azobenzene mesogens, because the azobenzene moieties of the SAM anchor the liquid crystalline PMA azobenzene domains of BC.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M., Chemical Reviews 2005, 105, 1103.Google Scholar
2. Ulman, A., Chem Rev 1996, 96, 1533.Google Scholar
3. Bermudez, V. M., Berry, A. D., Kim, H., Pique, A., Langmuir 2006, 22, 11113.Google Scholar
4. Tian, Y. Q., Watanabe, K., Kong, X. X., Abe, J., Iyoda, T., Macromolecules 2002, 35, 3739.Google Scholar
5. Chen, A., Komura, M., Kamata, K., Iyoda, T., Advanced Materials 2008, 20, 763.Google Scholar
6. Suzuki, S., Kamata, K., Yamauchi, H., Iyoda, T., Chemistry Letters 2007, 36, 978.Google Scholar
7. Watanabe, R., Kamata, K., Iyoda, T., Japanese Journal of Applied Physics 2008, 47, 5039.Google Scholar
8. Liu, N. G., Dunphy, D. R., Rodriguez, M. A., Singer, S., Brinker, J., Chemical Communications 2003, 1144.Google Scholar
9. Yun, D. J., Lee, D. K., Jeon, H. K., Rhee, S. W., Organic Electronics 2007, 8, 690.Google Scholar
10. Sugimura, H., Hozumi, A., Kameyama, T., Takai, O., Surface and Interface Analysis 2002, 34, 550.Google Scholar
11. Watanabe, S., Fujiwara, R., Hada, M., Okazaki, Y., Iyoda, T., Angewandte Chemie-International Edition 2007, 46, 1120.Google Scholar