Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-08T16:45:35.226Z Has data issue: false hasContentIssue false

MeV Boron Implantation and Masking

Published online by Cambridge University Press:  22 February 2011

James P. Lavine
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
A. J. Filo
Affiliation:
Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14650-2155
D. L. Losee
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
P. A. Guidash
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
S.-T. Lee
Affiliation:
Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14650-2155
G. H. Braunstein
Affiliation:
Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14650-2155
S. L. Kosman
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
H. Kyan
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
Get access

Abstract

Boron depth distributions are reported for MeV implants into silicon through a variety of masking materials. Silicon is implanted with boron through a 0.1-µm-thick layer of thermally grown silicon dioxide. Secondary ion mass spectrometry (SIMS) shows the projected ranges agree within 10% with data reported in the literature and with results from the computer program TRIM. Silicon dioxide, photoresist, and metal layers are used to mask the high-energy boron implants. The SIMS results indicate that TRIM overestimates the energy loss of MeV boron ions as they pass through photoresist and/or silicon dioxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Terrill, K.W., Byrne, P.F., Hu, C., Cheung, N.W., Appl. Phys. Lett. 45, 977 (1984).Google Scholar
2 “High-energy Ion-implantation Technology,” Nikkei Microdevices, December, 94-121 (1991).Google Scholar
3 Parikh, N.R., Hunn, J.D., McGucken, E., Swanson, M.L., White, C.W., Rudder, R.A., Malta, D.P., Posthill, J.B., Markunas, R.J., Appl. Phys. Lett. 61, 3124 (1992).Google Scholar
4 Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
5 Wong, H., Deng, E., Cheung, N.W., Chu, P.K., Strathman, E.M., Strathman, M.D., Nucl. Instrum. Meth. Phys. Res. B21, 447 (1987).Google Scholar
6 Ohyu, K., Suzuki, T., Yamanaka, T., Natsuaki, N., Nucl. Instrum. Meth. Phys. Res. B 37/38, 749 (1989).Google Scholar
7 Thevenin, P., Grob, J.J., Stuck, R., Siffert, P., Nucl. Instrum. Meth. Phys. Res. B 62, 346 (1992).Google Scholar
8 Behar, M., Weiser, M., Kalbitzer, S., Fink, D., Grande, F.L., Nucl. Instrum. Meth. Phys. Res. B34, 316 (1988).Google Scholar
9 Zalm, P.C., Fontijn, G.M., Janssen, K.T.F., Vriezema, C.J., Nucl. Instrum. Meth. Phys. Res. B42, 397 (1989).Google Scholar
10 Mutikainen, R.H., Wong, H., Cheung, N.W., Nucl. Instrum. Meth. Phys. Res. B37/38, 716 (1989).Google Scholar
11 Spinelli, P., Cartier, A.M., Bruel, M., Nucl. Instrum. Meth. Phys. Res. B21, 452 (1987).Google Scholar
12 Downing, R.G., Lavine, J.P., Hossain, T.Z., Russell, J.B., Zenner, G.P., J. Appl. Phys. 6 7, 3652 (1990).Google Scholar
13 Stevie, F.A., Martin, E.P. Jr., Kahora, P.M., Cargo, J.T., Nanda, A.K., Harrus, A.S., Muller, A.J., Krautter, H.W., J. Vac. Sci. Technol. A 9, 2813 (1991).Google Scholar
14 Lindhard, J. and Scharff, M., Phys. Rev. 12 4, 128 (1961).Google Scholar
15 Goppelt, P., Biersack, J.P., Gebauer, B., Fink, D., Bohne, W., Wilpert, M., Wilpert, Th., Nucl. Instrum. Meth. Phys. Res. B 80/81, 62 (1993).Google Scholar