Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T14:27:30.237Z Has data issue: false hasContentIssue false

Metastable Superstructures in RuSr2Gd1.4Ce0.6Cu2O10-δ?Superconductor Based on TEM Observation at Room Temperature

Published online by Cambridge University Press:  18 March 2011

Li Yang
Affiliation:
University of Aveiro, Department of Ceramic and Glass Engineering, 3810-193 Aveiro, Portugal Structure Research Lab, University of Science and Technology of China, 230026 Hefei, P. R. China
J. M. Vieira
Affiliation:
University of Aveiro, Department of Ceramic and Glass Engineering, 3810-193 Aveiro, Portugal
Kaibin Tang
Affiliation:
Structure Research Lab, University of Science and Technology of China, 230026 Hefei, P. R. China
Guien Zhou
Affiliation:
Structure Research Lab, University of Science and Technology of China, 230026 Hefei, P. R. China
Get access

Abstract

Three types of metastable modulations in Ru-based superconductor RuSr2Gd1.4Ce0.6Cu2O10-δ are observed by electron diffraction at room temperature and reported in this paper. The modulations are sensitive to the irradiation of the electron beam and the sample storage time. Having the tetragonal symmetry (I4/mmm) with a=0.384nm, c=2.864nm, the structure of RuSr2Gd1.4Ce0.6Cu2O10-δ?resembles that of YBa2Cu3O7-δ by inserting a fluorite type Gd1.4Ce0.6O2 layer instead of the Y layer and Ru ions residing in the Cu(1) site. In this compound, superconductivity is confined to the CuO2 layer while magnetism stems from the RuO2 layer. The metastable modulations display the interaction between the two layers from the structural point of view. The results suggest that although, superconductivity and magnetism are decoupled from each other in the unconventional superconductor, the effect may be limited by metastable lattice modulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Felner, I., Aasf, U., Levi, Y., Millo, O., Phys. Rev. B55, R3374(1997).Google Scholar
2. Felner, I., Aasf, U., Godart, C., Alleno, E., Physica B 259–261, 703(1999).Google Scholar
3. Bauernfeind, L., Widder, W., Braun, H. F., Physica C 254, 151(1995).Google Scholar
4. Kaibin, Tang, Yitai, Qian, Yadun, Zhao, Li, Yang, Zuyao, Chen and Yuheng, Zhang, Physica C 259, 168(1996).Google Scholar
5. Greatrex, R., Greenwood, N. N. and Lal, M., Mat. Res. Bull. 15, 113(1980).Google Scholar
6. Gibb, T.C., Greatrex, R., Greenwood, N. N. and Snowdon, G., J. Solid State Chem. 14, 193(1975).Google Scholar
7. Jorgensen, J. D., Pei, S.Y., Lightfoot, P., Shi, H., Paulikas, A. P., Veal, B. W., Physica C 167, 571(1990).Google Scholar
8. Veal, B. W., You, H., Paulikas, A. P., Shi, H., Fang, Y. and Downey, J. W., Phys. Rev. B 42, 4770(1990).Google Scholar
9. Wang, Y. Y., Zhang, H., Dravid, V.P., Marks, L.D., Han, P.D., Payne, D.A., Physica C 225, 247(1995).Google Scholar
10. Krekels, T., Kaesche, S., Van Tendeloo, G., Physica C 248, 317(1995)Google Scholar
11. Chen, C. H., Cheong, S. W. and Cooper, A.S., Phys. Rev. Lett. 71, 2461(1993)Google Scholar
12. Ogita, N., Takanashi, S., Udagawa, M. and Ohbayashi, K., J. Phys. Soc. Jpn. 61, 3009(1992).Google Scholar
13. Cheong, S. W., Aeppli, G., Mason, T. E., Mook, H., Hayden, S. M., Canfield, P. C., Fisk, Z., Clausen, K. N. and Martinez, J. L., Phys. Rev. Lett. 67, 1791(1991).Google Scholar
14. Hayden, S. M., Lander, G.H., Zarestky, J., Brown, P.J., Stassis, C., Metcalf, P. and Honig, J. M., Phys. Rev. Lett. 68, 1061(1992).Google Scholar