Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T09:14:50.329Z Has data issue: false hasContentIssue false

Metastable Defects in the Amorphous Silicon-Germanium Alloys

Published online by Cambridge University Press:  01 February 2011

J. David Cohen*
Affiliation:
Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403
Get access

Abstract

This paper first briefly reviews a few of the early studies that established some of the salient features of light-induced degradation in a-Si,Ge:H. In particular, I discuss the fact that both Si and Ge metastable dangling bonds are involved. I then review some of the recent studies carried out by members of my laboratory concerning the details of degradation in the low Ge fraction alloys utilizing the modulated photocurrent method to monitor the individual changes in the Si and Ge deep defects. By relating the metastable creation and annealing behavior of these two types of defects, new insights into the fundamental properties of metastable defects have been obtained for amorphous silicon materials in general. I will conclude with a brief discussion of the microscopic mechanisms that may be responsible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Bullot, J., Galin, M., Gauthier, M., and Bourdon, B., J. Phys. (Paris) 44, 713 (1983).Google Scholar
3. Nakamara, G., Sato, K., and Yukimoto, Y., Solar Cells 9, 75 (1983).Google Scholar
4. Aljishi, S., Smith, Z E., and Wagner, S., in Amorphous Silicon and Related Materials, ed. by Fritzsche, H. (World Scientific, Sinapore, 1989), pp. 887938.Google Scholar
5. Guha, S., Payson, J.S., Argawal, S.C., and Ovshinsky, S.R., J. Non-Cryst. Solids 97&98, 1455 (1988).Google Scholar
6. Stutzmann, M.., Street, R.A., Tsai, C.C., Boyce, J.B., and Ready, S.E., J. Appl. Phys. 66, 569 (1989).Google Scholar
7. Nebel, C.E., Weller, H.C., and Bauer, G.H., Mat. Res. Soc. Symp. Proc. 118, 507 (1988).Google Scholar
8. Paul, W., Chen, J.H., Liu, E.Z., Wetsel, A.E., and Wickboldt, P., J. Non-Cryst. Solids 164-166, 1 (1993).Google Scholar
9. Guha, S., Yang, J., Jones, S.J., Chen, Y., and Williamson, D.L., Appl. Phys. Lett 61, 1444 (1992).Google Scholar
10. Unold, T., Cohen, J.D., and Fortmann, C.M., Appl. Phys. Lett. 64, 1714 (1994).Google Scholar
11.See Cohen, J.D. in Properties of Amorphous Silicon and its Alloys, ed. by Searle, Tim, EMIS Datareview Series No. 19 (INSPEC, London, 1998), pp. 180187.Google Scholar
12. Schumm, G., Abel, C.D., and Bauer, G.H., Mat. Res. Soc. Symp. Proc. 258, 505 (1992).Google Scholar
13. Terakawa, A., Ph.D. Thesis, Kyoto University, 1999.Google Scholar
14. Wang, N.W., Morin, P.A., Chu, V., and Wagner, S., Mat.Res. Soc. Symp. Proc. 258, 589 (1992).Google Scholar
15. Cohen, J.D., NREL Reports: NREL/SR-520-25802 (1998) & NREL/SR-520-32535 (2002).Google Scholar
16. Michelson, C. E., Gelatos, A. V., and Cohen, J. D., Appl. Phys. Lett. 47, 412 (1985).Google Scholar
17. Wickboldt, P., Pang, D., Paul, W., Chen, J. H., Zhong, F., Chen, C.C., Cohen, J.D., and Williamson, D.L., J. Appl. Phys. 81, 6252 (1997).Google Scholar
18. Sheng, S.R., Braunstein, R., and Dalal, V.L., Mat. Res. Soc. Symp. Proc. 664, A8.4 (2001).Google Scholar
19. Fritzsche, H., Stradins, P., and Belomoin, G., Mat. Res. Soc. Symp. Proc. 420, 563 (1996).Google Scholar
20. Unold, T., Mat. Res. Soc. Symp. Proc. 336, 287 (1994).Google Scholar
21. Fuhs, W. and Finger, F., J. Non-Cryst. Solids 114, 1387 (1989).Google Scholar
22. Maltern, C., Finger, F., Fölsch, J., Kulessa, T., Wagner, H., Ray, S., Middya, A.R., and Hazra, S., Mat. Res. Soc. Symp. Proc. 377, 559 (1995).Google Scholar
23. Hazra, S., Middya, A.R., and Ray, S., Philos. Mag. B 75, 859 (1997).Google Scholar
24. Oheda, H., J. Appl. Phys. 52, 6693 (1981).Google Scholar
25. Brüggemann, R., Main, C., Berkin, J., and Reynolds, S., Phil. Mag. B 62, 29 (1990).Google Scholar
26. Schumm, G. and Bauer, G.H., Phys. Rev. B 39, 5311 (1989).Google Scholar
27. Longeaud, C. and Kleider, J.P., Phys. Rev. B 53 16133 (1996).Google Scholar
28. Hattori, K., Niwano, Y., Okamoto, H., Hamakawa, Y., J. Non-Cryst. Solids 137-138, 363 (1991).Google Scholar
29. Zhong, F. and Cohen, J.D., Mat. Res. Soc. Symp. Proc. 258, 813 (1992).Google Scholar
30. Cohen, J.D. and Kwon, D., J. Non-Cryst. Solids 227-230, 348 (1998).Google Scholar
31. Palinginis, K.C., Cohen, J.D., Yang, J.C., and Guha, S., J. Non-Cryst. Solids 266, 665 (2000).Google Scholar
32. Chapman, B.D., Han, S.-W., Seidler, G.T., Stern, E.A., Cohen, J.D., Guha, S., and Yang, J., J. Appl. Phys. 92, 801 (2002).Google Scholar
33. Branz, H.M., Phys. Rev. B 59, 5498 (1999).Google Scholar
34. Biswas, R., Pan, B.C., and Ye, Y., Mat. Res. Soc. Symp. Proc. 664, 14.1 (2001).Google Scholar
35. Palinginis, K.C., Cohen, J.D., Guha, S., and Yang, J.C., Phys. Rev. B 63, 201203(R) (2001).Google Scholar
36. Cohen, J.D., Heath, J., Palinginis, K.C., Yang, J.C., and Guha, S., J. Non-Cryst. Solids 299-302, 449 (2002).Google Scholar
37.See, for example, Gleskova, H. and Wagner, S., J. Non-Cryst. Solids 190, 157 (1995).Google Scholar
38. Stutzmann, M., Jackson, W. B., Tsai, C. C, Phys. Rev. B 32, 23 (1985)Google Scholar