Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:52:28.103Z Has data issue: false hasContentIssue false

Metastable Defect Kinetics in Hydrogen Passivated Polycrystalline Silicon

Published online by Cambridge University Press:  16 February 2011

N. H. Nickel
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
R. A. Street
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
W. B. Jackson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

The temperature dependence of the dark conductivity, σD, of unhydrogenated and hydrogen passivated polycrystalline silicon (poly-Si) films was Measured. While σD of unhydrogenated poly-Si did not exhibit any influence of thermal treatment prior to the measurement, striking effects were observed in hydrogenated poly-Si films. Below 268 K a cooling-rate dependent metastable change of σD is observed. The dark conductivity increases by more than 8 orders of magnitude. This frozen-in state is metastable: Annealing and a slow cool restore the temperature dependence of the relaxed state. The time and temperature dependence of the relaxation reveal that this process is thermally activated with 0.74 eV. The lack of the quenching metastability in unhydrogenated poly-Si is direct evidence that the metastable changes in σD are due to the formation and dissociation of an electrically active hydrogen complex, in the grain-boundary regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. den Boer, W., Geerts, M. J., Ondris, M., and Wentinck, H. M., J. Non-Cryst. Sol. 60, 268 (1984).Google Scholar
3. Pfleiderer, H., Kusian, W., and Krühler, W., Solid St. Commun. 49, 493 (1984).CrossRefGoogle Scholar
4. Jackson, W. B. and Moyer, M. D., Phys. Rev. B 36, 6217 (1987).Google Scholar
5. Nickel, N., Funs, W., and Mell, H., J. Non-Cryst. Sol. 115, 159 (1989).Google Scholar
6. Street, R. A., Hack, M., and Jackson, W. B., Phys. Rev. B 37, 4209 (1988).CrossRefGoogle Scholar
7. Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
8. Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 36, 456 (1981).CrossRefGoogle Scholar
9. Bourret, A., in Polycrystalline Semiconductors, Physical Properties and Applications, edited by Harbeke, G. (Springer, Berlin 1985), Vol. 57, p. 2 and references therein.Google Scholar
10. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).CrossRefGoogle Scholar
11. Nickel, N. H., Johnson, N. M., and Jackson, W. B., Appl. Phys. Lett. 62, 3285 (1993).Google Scholar
12. Nickel, N. H., Jackson, W. B., and Johnson, N. M., Phys. Rev. Lett. 71, 2733 (1993).CrossRefGoogle Scholar
13. Tanielian, M., Phil. Mag. B 45, 435 (1982).Google Scholar
14. Mott, N. F., J. Non-Cryst. Sol. 1, 1 (1968).Google Scholar
15. Street, R. A., in Hydrogenated Amorphous silicon, edited by Cahn, R. W., Davis, E. A., and Ward, I. M. (Cambridge University Press, Cambridge 1991).Google Scholar
16. McMahon, T. J. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987).Google Scholar