Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-26T03:00:46.943Z Has data issue: false hasContentIssue false

Metalorganic Chemical Vapor Deposition of High Quality GaAs and AlGaAs Using Tertiarybutylarsine

Published online by Cambridge University Press:  28 February 2011

G. Haacke
Affiliation:
American Cyanamid Company, Chemical Research Division, Stamford, CT 06904
S. P. Watkins
Affiliation:
American Cyanamid Company, Chemical Research Division, Stamford, CT 06904
H. Burkhard
Affiliation:
American Cyanamid Company, Chemical Research Division, Stamford, CT 06904
C. J. Calbick
Affiliation:
American Cyanamid Company, Chemical Research Division, Stamford, CT 06904
J. Quick
Affiliation:
American Cyanamid Company, Chemical Research Division, Stamford, CT 06904
Get access

Abstract

This paper discusses recent improvements achieved in the growth of epitaxial layers of GaAs and AlGaAs using the liquid arsine substitute tertiarybutylarsine (TBA) and metal alkyls. The high purity TBA now available yields undoped GaAs with residual donor/acceptor concentrations in the low 1014 cm−3 range. Under optimized growth conditiorp the layers are either n-type and have 77*K mobilities up to 85,000 cm2 //Vs or they are compensated or p-type. For aluminum gallium arsenide, layers grown with TBA have properties similar to arsine-grown material as demonstrated by low temperature photoluminescence (PL). The PL efficiencies and line widths of the TBA-grown AlGaAs samples are comparable to those prepared with arsine.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Valentine, D., AIP Conf. Proc. 166, 35 (1988).CrossRefGoogle Scholar
2. Stringfellow, G. B., J. Electron. Mat. 17, 327 (1988).CrossRefGoogle Scholar
3. Haacke, G., Watkins, S. P. and Burkhard, H., Appl. Phys. Lett. in press.Google Scholar
4.Contributions to this effort were made by Melaragni, A., and Olson, K..Google Scholar
5. Watkins, S. P., Haacke, G. and Burkhard, H., Appl. Phys. Lett. 52, 401 (1988).CrossRefGoogle Scholar
6. Ven, J. van de, Schoot, H. G. and Giling, L. J., J. Appl. Phys. 60, 1648 (1986).Google Scholar
7. Kuech, T. F. and Veuhoff, E., J. Cryst. Growth 68, 148 (1984).CrossRefGoogle Scholar
8. Koteles, E. S., Lee, J., Salerno, J. P. and Vassell, M. O., Phys. Rev. Lett. 55, 867 (1985).CrossRefGoogle Scholar
9. Walukiewicz, W., Logowski, J. and Gatos, H. C., J. Appl. Phys. 53, 769 (1982).CrossRefGoogle Scholar
10. Bose, S. S., Lee, B., Kim, M. H. and Stillman, G. E., Appl. Phys. Lett. 51, 937 (1987).CrossRefGoogle Scholar
11. Watkins, S. P., Haacke, G., Burkhard, H., Thewalt, M. L. W. and Charbonneau, S., J. Appl. Phys. 64, 3205 (1988).CrossRefGoogle Scholar
12. Kuech, T. F., Wolford, D. J., Veuhoff, E., Deline, V., Mooney, P. M., Potemski, R. and Bradley, J., J. Appl. Phys. 62, 632 (1987).CrossRefGoogle Scholar