Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:38:55.923Z Has data issue: false hasContentIssue false

Metal/Metal Nanocrystalline Cellular Composites

Published online by Cambridge University Press:  31 January 2011

Brandon A Bouwhuis
Affiliation:
b.bouwhuis@gmail.com, University of Toronto, Materials Science and Engineering, Toronto, Canada
Eral Bele
Affiliation:
eral.bele@gmail.com, University of Toronto, Materials Science and Engineering, Toronto, Canada
Glenn D Hibbard
Affiliation:
glenn.hibbard@utoronto.ca, University of Toronto, Materials Science and Engineering, Toronto, Canada
Get access

Abstract

Nanocrystalline electrodeposition can be used to reinforce conventional metallic micro-truss materials and conventional metal foams, creating new types of metal/metal cellular hybrids in which the mechanical performance is controlled by an interconnected network of nanocrystalline tubes. This approach takes advantage of the large strength increase that can be obtained by grain size reduction to the nm-scale and the fact that the electrodeposited material is optimally positioned away from the neutral bending axis of the composite cellular struts or ligaments. This article presents an overview of the potential for structural reinforcement of bending-dominated and stretching-dominated cellular architectures by nanocrystalline electrodeposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gleiter, H., Acta Mater. 48, 1 (2000).10.1016/S1359-6454(99)00285-2Google Scholar
2 Meyers, M.A., Mishra, A., Benson, D.J., Prog. Mater. Sci. 51, 427 (2006).10.1016/j.pmatsci.2005.08.003Google Scholar
3 Koch, C.C., J. Mater. Sci. 42, 1403 (2007).10.1007/s10853-006-0609-3Google Scholar
4 Gordon, L.M., Bouwhuis, B.A., Suralvo, M., McCrea, J.L., Palumbo, G., and Hibbard, G.D., Acta Mater. 57, 932 (2009).10.1016/j.actamat.2008.10.038Google Scholar
5 Ashby, M.F. and Brechet, Y.J.M., Acta Mater. 51, 5801 (2003).10.1016/S1359-6454(03)00441-5Google Scholar
6 Ashby, M.F., Phil. Trans. R. Soc. A 364, 15 (2006).10.1098/rsta.2005.1678Google Scholar
7 Wadley, H.N.G., Phil. Trans. R. Soc. A 364, 31 (2006).10.1098/rsta.2005.1697Google Scholar
8 Suralvo, M., Bouwhuis, B.A., McCrea, J.L., Palumbo, G., and Hibbard, G.D., Scripta Mater. 58, 247 (2008).10.1016/j.scriptamat.2007.10.018Google Scholar
9 BA, Bouwhuis, Ronis, T, JL, McCrea, Palumbo, G, and GD, Hibbard. In: Proceedings of CellMet 2008 conference (Dresden, Germany), in press.Google Scholar
10 Bouwhuis, B.A., Ronis, T., McCrea, J.L., Palumbo, G., and Hibbard, G.D., Comp. Sci. Tech. 69, 385 (2009).10.1016/j.compscitech.2008.10.022Google Scholar
11 Boonyongmaneerat, Y., Schuh, C.A., Dunand, D.C., Scripta Mater. 59, 336 (2008).10.1016/j.scriptamat.2008.03.035Google Scholar
12 Bouwhuis, B.A., McCrea, J.L., Palumbo, G., and Hibbard, G.D., Acta Mater., in press.Google Scholar
13 McMahon, G. and Erb, U., Microstruct. Sci. 17, 447 (1989).Google Scholar
14 McMahon, G. and Erb, U., J. Mater. Sci. Lett. 8, 865 (1989).10.1007/BF01730163Google Scholar
15 Gonzalez, F., Brennenstuhl, A.M., Erb, U., Shmayda, W., and Lichtenberger, P.C., Mater. Sci. Forum 225-227, 831 (1996).10.4028/www.scientific.net/MSF.225-227.831Google Scholar
16 Erb, U., Aust, K.T., and Palumbo, G., in Nanostructured Materials: Processing, Properties and Applications, 2nd Ed. Koch, C.C. editor (William Andrew Inc., Norwich, 2007).Google Scholar
17 Wang, N., Wang, Z., Aust, K.T., and Erb, U., Mater. Sci. Eng. A237, 150 (1997).Google Scholar
18 Thompson, A.W., Acta Metall. 25, 83 (1977).10.1016/0001-6160(77)90249-8Google Scholar
19 Zimmerman, A.F., Palumbo, G., Aust, K.T., and Erb, U., Mater. Sci. Eng. A328, 137 (2002).10.1016/S0921-5093(01)01692-6Google Scholar
20 Torre, F. Dalla, Swygenhoven, H. Van, and Victoria, M., Acta Mater. 50, 3957 (2002).10.1016/S1359-6454(02)00198-2Google Scholar
21 Fan, G.J., Fu, L.F., Qiao, D.C., Choo, H., Liaw, P.K., and Browning, N.D., Scripta Mater. 54, 2137 (2006).10.1016/j.scriptamat.2006.02.041Google Scholar
22 Brooks, I., Lin, P., Palumbo, G., Hibbard, G.D., and Erb, U., Mater. Sci. Eng. 491, 412 (2008).10.1016/j.msea.2008.02.015Google Scholar
23 Wei, H.S., Hibbard, G.D., Palumbo, G., and Erb, U., Scripta Mater. 57, 996 (2007).10.1016/j.scriptamat.2007.08.008Google Scholar
24 Klement, U., Erb, U., El-Sherik, A.M., and Aust, K.T., Mater. Sci. Eng. A 203, 177 (1995).10.1016/0921-5093(95)09864-XGoogle Scholar
25 Bouwhuis, B.A. and Hibbard, G.D., Metall. Mater. Trans. A 39, 3027 (2008).10.1007/s11661-008-9661-8Google Scholar
26 Erb, U. and El-Sherik, A.M., US Patent No. 5 353 266 (October 1994)Google Scholar
27 Erb, U., El-Sherik, A.M., Cheung, C.K.S., and Aus, M.J., US Patent 5 433 797 (July 1995)Google Scholar
28 El-Sherik, A.M., and Erb, U., J. Mater. Sci. 30, 5743 (1995).10.1007/BF00356715Google Scholar
29 Cullity, B.D., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Don Mills, 1978).Google Scholar
30 El-Sherik, A.M., Erb, U., Palumbo, G., and Aust, K.T., Scripta Mater. 27, 1185 (1992).10.1016/0956-716X(92)90596-7Google Scholar
31 Bouwhuis, B.A., Bele, E., and Hibbard, G.D., J. Mater. Sci. 43, 3267 (2008).10.1007/s10853-008-2529-xGoogle Scholar
32 Paunovic, M., Schlesinger, M., and Weil, R., in Modern Electroplating, 4th ed., edited by Schlesinger, M. and Paunovic, M., (Wiley Interscience, New York, 2000).Google Scholar
33 Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G., Metal Foams - A Design Guide, (Butterworth-Heinemann, Oxford, 2000).Google Scholar
34Integran Technologies Inc. (private communication).Google Scholar
35 Deshpande, V.S. and Fleck, N.A., Int. J. Solids Struct. 38, 6275 (2001).10.1016/S0020-7683(01)00103-2Google Scholar
36 Shanley, F.R., Strength of Materials, (McGraw-Hill, New York, 1957).Google Scholar
37 Sypeck, D.J. and Wadley, H.N.G., Adv. Eng. Mater. 4, 759 (2002).10.1002/1527-2648(20021014)4:10<759::AID-ADEM759>3.0.CO;2-A3.0.CO;2-A>Google Scholar