Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:39:30.359Z Has data issue: false hasContentIssue false

Metal vs. Polymer Electrodes in Organic Devices: Energy Level Alignment, Hole Injection, and Structure

Published online by Cambridge University Press:  15 February 2011

N. Koch
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A. Institut f. Physik, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
B. Nickel
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, U.S.A.
J. Ghijsen
Affiliation:
H.C.Starck GmbH, c/o Bayer AG Uerdingen, D-47829 Krefeld, Germany
A. Elschner
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. Schwartz
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, U.S.A.
J.-J. Pireaux
Affiliation:
H.C.Starck GmbH, c/o Bayer AG Uerdingen, D-47829 Krefeld, Germany
A. Kahn
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Get access

Abstract

L We have investigated the electronic, structural, and charge injection properties of interfaces formed between three electroactive conjugated organic materials, i.e., N, N'-bis-(1-naphthyl)-N, N'-diphenyl1-1,1-biphenyl1-4,4'-diamine (á-NPD), pentacene, p-sexiphenyl, and two high work function electrode materials, i.e., gold and the conducting polymer poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). Ultraviolet photoelectron spectroscopy shows that the hole injection barrier between the three organic materials and PEDOT:PSS is lower by 0.6-1.0 eV as compared to Au, despite a similar work function of the pristine electrode material surfaces (ca. 5 eV). This very large difference is due to an effective change of the metal work function due to the deposition of organic molecules, i.e., a decrease of the Au surface dipole due to adsorption. Accordingly, model device structures built from á-NPD and pentacene on the two different electrode materials show much higher current densities for hole injection from PEDOT:PSS than from Au. Hole injection from Au for á-NPD devices is independent of deposition sequence and substrate. Pentacene devices exhibit significant asymmetries in that respect, due to a strong dependence of the morphology and preferred molecular orientation of the crystalline material on the substrate, as shown by atomic force microscopy and X-ray diffraction. Consequently, great care must be taken when modeling current-voltage characteristics of devices comprised of crystalline organic solids, especially when the influence of film thickness or different substrate materials is to be studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hill, I. G., Rajagopal, A., Kahn, A., and Hu, Y., Appl. Phys. Lett. 73 (5), 662 (1998).Google Scholar
2. Ishii, H. and Seki, K., IEEE Transactions on Electronic Devices 44, 1295 (1997).Google Scholar
3. Ishii, H., Sugiyama, K., Ito, E., and Seki, K., Adv. Mater. 11 (8), 605 (1999).Google Scholar
4. Crispin, X., Geskin, V., Crispin, A., Cornil, J., Lazzaroni, R., Salaneck, W. R., and Bredas, J. L., J. Am. Chem. Soc. 124 (27), 8131 (2002).Google Scholar
5. Cardona, M. and Ley, L., in Photoemission in Solids I, Topics in Applied Physics, edited by Cardona, M. and Ley, L. (Springer, Berlin, 1978), Vol. 26, pp. 16.Google Scholar
6. van, S. A. Slyke, Chen, C. H., and Tang, C. W., Appl. Phys. Lett. 15, 2160 (1996).Google Scholar
7. Halik, Marcus, Klauk, Hagen, Zschieschang, Ute, Kriem, Tarik, Schmid, Günter, Radlik, Wolfgang, and Wussow, Klaus, Appl. Phys. Lett. 81, 289 (2002).Google Scholar
8. Dimitrakopoulos, C. D. and Malenfant, P. R. L., Adv. Mater. 14 (2), 99 (2002).Google Scholar
9. Graupner, W., Grem, G., Meghdadi, F., Paar, Ch., Leising, G., Scherf, U., K. Müllen, Fischer, W., and Stelzer, F., Molecular Crystals and Liquid Crystals 256, 549 (1994).Google Scholar
10. Koch, N., Pogantsch, A., E. List, J.W., Leising, G., Blyth, R. I. R., Ramsey, M. G., and Netzer, F. P., Appl. Phys. Lett. 74 (20), 2909 (1999).Google Scholar
11. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., and Schlom, D. G., Appl. Phys. Lett. 71 (26), 3853 (1997).Google Scholar
12. Johnson, R.L. and Reichardt, J., Nucl. Instr. Methods 208, 719 (1983).Google Scholar
13. Hill, I. G., Rajagopal, A., and Kahn, A., J. Appl. Phys. 84, 3236 (1998).Google Scholar
14. Koch, N., Kahn, A., Ghijsen, J., Pireaux, J. J., Schwartz, J., Johnson, R. L., and Elschner, A., Appl. Phys. Lett. 82 (1), 70 (2003).Google Scholar
15. Koch, N., Elschner, A., Schwartz, J., and Kahn, A., Appl. Phys. Lett. 82, 2281 (2003).Google Scholar
16. Gundlach, D. J., Lin, Y. Y., Jackson, T. N., Nelson, S. F., and Schlom, D. G., IEEE Electron Device Lett. 18 (3), 87 (1997).Google Scholar
17. Casalis, L.,Danisman, M. F., Nickel, B., Bracco, G., Toccoli, T., Iannotta, S., and Scoles, G., Phys. Rev. Lett., in press.Google Scholar
18. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80 (4), 2501 (1996).Google Scholar