Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-28T02:02:57.215Z Has data issue: false hasContentIssue false

Metal Organic Chemical Vapor Deposition of Al and CuAl Alloy Films in a Vertical, High-Speed, Rotating Disk Reactor

Published online by Cambridge University Press:  22 February 2011

G. S. Tompa
Affiliation:
EMCORE Corporation, Somerset, NJ, 07030.
E. Wolak
Affiliation:
EMCORE Corporation, Somerset, NJ, 07030.
R. A. Stall
Affiliation:
EMCORE Corporation, Somerset, NJ, 07030.
M. A. George
Affiliation:
Air Products and Chemicals Inc., Allentown, PA 18195
M. Lippitt
Affiliation:
Harris Corporation, Palm Bay, FL 32905
John A.T. Norman
Affiliation:
Schumacher, Carlsbad, CA 92009
Get access

Abstract

A vertical high-speed, rotating disk reactor has been used to produce Al and CuAl alloy films on 125 mm diameter Si (100) wafers. Trimethylamine-alane and Cu (hexafluoroacetylacetonate) trimethylvinylsilane (CupraSelect) were used as metal precursors. Aluminum films were deposited over the temperature range from ∼100 C to 700 C. Aluminum sheet resistance measurements showed the films to have resistance 2 to 3 times that of bulk Al films. CuAl alloy films were deposited sequentially and by codeposition. At 30 Torr, deposition rates as high as 3.7 um/hr, 0.024 um/hr, and 1 um/hr for Al, Cu, and CuAl films, respectively, were demonstrated. Auger analysis showed the deposited films to be free of contaminants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Evans, G.H. and Greif, R., J. Heat Transfer 109, 928 (1987);Google Scholar
Schmitz, J.E.J., von Dijk, A.J.M., Suijker, J.L.G., Buiting, M.J., and Ellwanger, R.C., Appl. Surf. Sci. 38, 350 (1989);Google Scholar
Kotecki, D.E. and Barbee, S.G., J. Vac. Sci. Technol. A 10 (4) 843 (1992);Google Scholar
Wang, C.A., Patnaik, S., Caunt, J.W. and Brown, R.A., J. Crystal Growth 93, 228 (1988).Google Scholar
2. Tompa, G.S., McKee, M.A., Beckham, C., Zawadzki, P.A., Colabella, J.M., Reinert, P.D., Capuder, K., Stall, R.A., and Norris, P.E., J. Crystal Growth 93, 220 (1988).Google Scholar
3. McKee, M.A., Norris, P.E., Stall, R.A., Tompa, G.S., Chern, C.S., Noh, D., Kang, S.S., and Jasinski, J., J. Crystal Growth, 107, 445 (1991).Google Scholar
4. Kang, S., Jasinski, T.J., Tompa, G.S., and Stall, R.A., Proceedings of MRS Spring 4/90 Symposium V, vol. 198, 421 (1990).Google Scholar
5. Stall, R.A., Wolak, E., and Zawadzki, P., ULSI Workshop 10/91, in press.Google Scholar
6. Abemathy, C.R., Jordon, A.S., Pearton, S.J., Hobson, W.S., Bohling, D.A. and Muhr, G.T., Appl. Phys. Lett. 56 (26) 2654 (1990).Google Scholar
7. Beach, D.B., Blum, S.E. and LeGoues, F.K., J. Vac. Sci. Technol. A 7 (5) 3117 (1989);Google Scholar
Gross, M.E., Cheung, K.P., Fleming, C.G., Kovalchick, J. and Heimbrook, L.A., J. Vac. Sci. Technol. A 9 (1) 57 (1991).Google Scholar
8. Beach, D.B., LeGoues, F.K. and Hu, C.K., Chem. of Mat. 2, 217 (1990);Google Scholar
Shiu, H.K., Chi, K.M., Hampden-Smith, M.J., Kodas, T.T., Farr, J.D. and Poffet, M., Adv. Mat. 3, 246 (1991);Google Scholar
Cohen, S.L., Liehr, M. and Kasi, S., Appl. Phys. Lett. 60 (13) 1585 (1992).Google Scholar
9. Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A. and Hochberg, A.K., Proceedings of VLSI Multilevel Interconnection Conf., 6/91, IEEE, pg. 123.Google Scholar