Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-18T18:53:35.205Z Has data issue: false hasContentIssue false

Melting Relations of Bi2O3-SrO-CaO-CuO Superconductors at Various Oxygen Fugacities

Published online by Cambridge University Press:  16 February 2011

Vance J. Styve
Affiliation:
Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston Texas 77204, styve@uh.edu
Joel Geny
Affiliation:
Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston Texas 77204, styve@uh.edu
James K. Meen
Affiliation:
Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston Texas 77204, styve@uh.edu
Don Elthon
Affiliation:
Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston Texas 77204, styve@uh.edu
Get access

Abstract

In an effort to synthesize monophasic superconducting oxides in the quaternary system Bi2O3-SrO-CaO-CuO two studies have been conducted. The melting relations of superconducting oxides Bi2Sr2CaCu2O8 (Bi-2212) and Bi2Sr2Ca2Cu3O10 (Bi-2223) have been experimentally investigated separately at various oxygen fugacities {f(O2)} from I to 3. 10-4 bar at 1 atm total pressure. Several interesting properties of the system have been found with respect to this portion of the quaternary; the modal proportions of liquid produced at the solidus depend on the oxygen fugacity. The amount of liquid produced at the Bi-2212 solidus reached a maximum of approximately 75% at f(O2) = 0.1 bar, Bi-2223's maximum proportion of liquid formed at the solidus continues to increase up to the lowest oxygen fugacity f(O2) = 0.01 bar studied. CaO (with a small amount of dissolved SrO) is the liquidus phase over the entire range of f(O2) for both compositions. (Sr,Ca)2CuO3 is the second phase to crystallize at high f(O2) but, as f(O2) decreases, its primary phase volume shifts for Bi-2212, and Bi2(Ca,Sr)3O6 is the second phase to form. (Sr,Ca)14Cu24O41 exhibited liquidus relationship only in high oxygen fugacities. Only Bi-2212 melts to assemblages that include bismuth-bearing crystalline phases. Bi9(Ca,Sr)16Ox is stable only at high oxygen fugacities and Bi2(Ca,Sr)3O6 is only stable at the lower values. At the lowest oxygen fugacities, Bi-2212 liquids crystallize (SrCa)CuO2 at a higher temperature than (SrCa)2CuO3 and no (Sr,Ca)CuO2 was found in Bi-2223 bulk compositions. These variations apply constraints on the positions of the univariant and invariant phase equilibria and these constraints are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Park, C., Wong-Ng, W., Cook, L.P., Snyder, R.L., Sastry, P.V.P.S.S., West, A.R., Physica C, 304, 1998, pp. 265–76Google Scholar
2. Suzuki, T., Yumoto, K-I., Mamiya, M., Hasegawa, M., Takei, H., Physica C, 301, 1998, pp. 173–84Google Scholar
3. Strobel, P., Toledano, J.C., Morin, D., Schneck, J., Vacquier, G., Monnereau, O., Primot, J., Fournier, T., Physica C, 201, 1992, pp. 2742 Google Scholar
4. Lim, H., Byrne, J.G., J. Mats. Sc., 31, 1996, pp. 2349–52Google Scholar
5. Idemoto, Y., Shizuka, K., Yasuda, Y., Fueki, K., Physica C, 211, 1993, pp. 3644 Google Scholar
6. Mozhaev, A.P., Chernyaev, S.V., Badun, Y.V., Kuznetsov, M.S., J. of Solid State Chem., 119, 1995, pp. 120–24Google Scholar
7. Margulies, L., Dennis, K.W., Kramer, M.J., McCallum, R.W., Physica C, 266, 1996, pp. 6274 Google Scholar
8. Qvarford, M., Soderholm, S., Tjemberg, O., Chiaia, G., Nylen, H., Nyholm, R., Lindau, I., Karlsson, U.O., Bernhoff, H., Physica C, 265, 1996, pp. 113–20Google Scholar
9. Kazin, P.E., Uskova, M.A., Tretyakov, Y.D., Jansen, M., Scheurell, S., Physica C, 301, 1998, pp. 185–91Google Scholar
10. Huang, Y.T., Shy, D.S., Chen, L.J., Physica C, 294, 1998, pp. 140–46Google Scholar
11. Zhu, W., Kuo, C.K., Nicholson, P.S., J. Am. Ceram. Soc., 80 [8], 1997, pp. 1975–80Google Scholar
12. Kim, W-J., Kwon, S-C., Lee, H.J., Lee, H-G., Hong, G-W, Kuk, I-H., Physica C, 294, 1998, pp. 147–55Google Scholar
13. Polonka, J., Xu, M., Goldman, A.I., Finnemore, D.K., J. Appl Phys, 74, 1993, pp. 7397–01Google Scholar
14. Polonka, J., Xu, M., Ostenson, J. E., Goldman, A. I., Finnemore, D. K., Advances in Cryogenic Engineering, 40, 1994, pp. 4143 Google Scholar
15. Endo, A., Nishikida, S., IEEE Trans on App. Superconductivity, 3, 1993, pp. 931–34Google Scholar
16. Yan-rong, L., You-mo, L., Guang-Yan, H., Physica C, 176, 1991, pp. 477–80Google Scholar
17. Nevriva, M., Knizek, K., Pollert, E., Physica C, 235-240, 1994, pp.327–28Google Scholar
18. Zhang, W., Goodilin, E.A., Hellstrom, E.E., Supercon. Sc. Tech., 9, 1996, pp. 211–17Google Scholar
19. Wong-Ng, W.K., Cook, L., J. Am. Ceram. Soc., 81 [7], 1998, 1829–38Google Scholar
20. Suzuki, T., Yumoto, K-I., Mamiya, M., Hasegawa, M., Takei, H., Physica C, 307, 1998, pp. 111 Google Scholar
21. Arendt, R.H., Garbauska, M.F., Lay, K.W., Tkaczyk, J.E., Physica C, 176, 1991, pp. 131136 Google Scholar
22. Arendt, R.H., Garbauskas, M.F., Bednarczyk, P.J., Physica C, 176, 1991, pp. 126130 Google Scholar
23. Stassen, S., Vanderschueren, A., Mazeas, N., Rulmont, A., Ausloos, M., Cloots, R., Physica C, 262, 1996, pp. 4553 Google Scholar
24. Majewski, P., Sotelo, A., Szillat, H., Kaesche, S., Aldinger, F., Physica C, 275, 1997, pp. 4751 Google Scholar
25. Margulies, L., Dennis, K.W., Hofer, R.J., Kramer, M.J., McCallum, R.W., Physica C, 264, 1996, pp. 133136 Google Scholar
26. MacManus-Driscoll, J.L., Bravman, J.C., Savoy, R.J., Gorman, G., Beyers, R.B., J. Am. Ceram. Soc., 77 [9], 1994, pp. 2305–13Google Scholar
27. Geny, J., Meen, J.K., Elthon, D., Paper in preparation.Google Scholar