Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T05:11:29.346Z Has data issue: false hasContentIssue false

Melting of Ion Implanted and Relaxed Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

M.G. Grimaldi
Affiliation:
Dipartimento di Fisica, 57 Corso Italia, 195129, Catania, Italy
P. Baeri
Affiliation:
Dipartimento di Fisica, 57 Corso Italia, 195129, Catania, Italy
G. Baratta
Affiliation:
Istituto di Astronomia, viale A. Doria, 195100, Catania, Italy
Get access

Abstract

The difference in the melting temperature of ion implanted and relaxed amorphous silicon has been measured. Pulsed laser irradiation (λ=347 nm, τ=30 ns) has been used to induce surface melting in the amorphous layer and time resolved reflectivity to detect the melting onset. The threshold energy density for surface melting in the relaxed amorphous was found 15.9±.3% higher than that in the unrelaxed one. The estimate of the variation of the thermal parameters in amorphous silicon upon relaxation allowed a determination of ΔTM=45±10 K between relaxed and unrelaxed amorphous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Roorda, S., Doorn, S., Sinke, W.C., Scholte, P.M. and van Loenen, E., Phys. Rev. Lett. 62(16), 1880(1989)Google Scholar
2 Donovan, E.P., Spaepen, F., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 55(15), 1516(1989)Google Scholar
3 Baeri, P., Foti, G., Poate, J.M. and Cullis, A.G., Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
4 Knapp, J.A. and Follstaed, D.M., Phys.Rev.Lett. 58,2454(1987)Google Scholar
5 Baeri, P., Reitano, R., Malvezzi, A.M. and Borghesi, A., J.Appl.Phys. in pressGoogle Scholar
6 Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A. G. and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
7 Jellison, G.E., Lowndes, D.H., Mashburn, D.N., Wood, R.F., Phys.Rev.B 34,2407(1986)Google Scholar
8 Tsu, R., Hernandez, j.g. and Pollak, F.H., J. Non-Cryst. Solids 66, pp 109114 (1984).Google Scholar
9 Sinke, W.C., Warabisauko, T., Miyao, M., Tokuyama, T., Roorda, S. and Saris, F.W., J. Non-Cryst. Solids 99, pp 308323 (1988).Google Scholar
10 Papa, T., Scudieri, F., Marinelli, M., Zammit, V. and Cembali, G., J. Phys. Colloq. (Paris) C5, 73 (1983).Google Scholar
11 Baeri, P. and Campisano, S.U., in Laser Annealing of Semiconductors, edited by Poate, J.M. and Mayer, J.W. (Academic Press, New York,1982), chapter 4Google Scholar
12 Auston, D.H., Golovchenko, J.A., Smith, P.R., Surko, C.H., and Venkatesan, T.N.C., Appl.Phys.Lett. 33, 539 (1978)Google Scholar
13 Grimaldi, M.G. and Baeri, P.; submitted for publication.Google Scholar