Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T11:23:38.310Z Has data issue: false hasContentIssue false

Mechanisms in embedded selective epitaxy and overgrowth of an integrated laser/modulator quantum well structure using MOMBE and MOVPE

Published online by Cambridge University Press:  17 March 2011

Philipp Kröner
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany University of Ulm, Department of Experimental Physics, D-89069 Ulm, Germany
Horst Baumeister
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany
Roland Gessner
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany
Josef Rieger
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany
Michael Schier
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany
Eberhard Veuhoff
Affiliation:
Infineon Technologies, Corporate Research CPR PH, D-81730 Munich, Germany
Othmar Marti
Affiliation:
University of Ulm, Department of Experimental Physics, D-89069 Ulm, Germany
Get access

Abstract

Lateral integration of optoelectronic devices comprising strained multiple quantum well (MQW) structures can most successfully be accomplished by selective area epitaxy using metal organic molecular beam epitaxy (MOMBE). We optimized the growth parameters with respect to a planar butt coupling and sharp, flat MQW interfaces in an integrated MQW laser / MQW modulator structure. Defect generation in metal organic vapor phase epitaxy (MOVPE) overgrown cladding layers is analyzed and shown to contain information about the quality of the buried butt coupling. A ridge waveguide structure has successfully been fabricated from an optimized integrated laser / modulator structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Debrégeas-Sillard, H., Doussière, P., Bodéré, A., Ph. Rael, Legouezigou, O., Michaud, G., Gaborit, F., Gauchard, S., Brillouet, F., IEEE Phot. Techn. Lett. 11 (11) (1999) 1485 Google Scholar
[2] Veuhoff, E., J. Crystal Growth 195 (1998) 444 Google Scholar
[3] Kröner, P., Baumeister, H., Rieger, J., Veuhoff, E., Marti, O., Heinecke, H., J. Crystal Growth 209 (2000) 424 Google Scholar
[4] Veuhoff, E., J. Crystal Growth 188 (1998) 231 Google Scholar
[5] Kayser, O., J. Crystal Growth 107 (1991) 989 Google Scholar
[6] Lambert, M., Péralès, A., Vergnaud, R., Starck, C., J. Crystal Growth 105 (1990) 97 Google Scholar
[7] Heinecke, H., Davies, G.J., in: Foord, J.S., Davies, G.J., Tsang, W.T. (Eds.), Chemical Beam Epitaxy and Related Techniques, Wiley, New York, 1997, p. 331 Google Scholar
[8] Davies, G., Duncan, W., Skevington, P., French, C., Foord, J., Mater. Sci. Eng. B9 (1991) 93 Google Scholar
[9] Künzel, H., Ebert, S., Gibis, R., Kaiser, R., Kizuki, H., Malchow, S., Urmann, G., J. Crystal Growth 192 (1998) 56 Google Scholar
[10] Matz, R., Heinecke, H., Baur, B., Primig, R., Cremer, C., J. Crystal Growth 127 (1993) 230 Google Scholar
[11] Rettig, R., Bernatz, G., Jiang, J., Schaper, A., Stolz, W., Philips-University Marburg, Germany (to be published)Google Scholar