Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T19:29:26.854Z Has data issue: false hasContentIssue false

Mechanism of Dopant Activation Enhancement in Shallow Junctions by Hydrogen

Published online by Cambridge University Press:  01 February 2011

A. Vengurlekar
Affiliation:
Department of Engineering Science, Pennsylvania State University, University Park, PA 16802
S. Ashok
Affiliation:
Department of Engineering Science, Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The ability to activate greater amounts of dopants is a significant challenge for the realization of shallow junctions in device scaling for Si CMOS technology. Dopant activation is difficult to achieve in shallow junctions due to higher concentrations of dopants and possible formation of dopant clusters. The high temperatures currently used to activate dopants result in increased junction depth and process integration issues with high-k dielectrics. However, lowering the annealing temperature results in lesser dopant activation and problems with transient enhanced diffusion. Our previous work reported on the enhancement of activation in boron implanted at a dose of 5E14/cm2 and annealed at temperatures of 450 °C and below, by the incorporation of atomic hydrogen introduced by exposing the substrate to a hydrogen plasma at 250 °C. In this work, further experiments have been carried out to get a better understanding of the mechanisms responsible for boron activation enhancement. Hydrogen-related activation was studied in boron, phosphorus and antimony implanted samples. The experimental results shed new light on the interactions among atomic hydrogen, point defects and dopants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M., Maes, H. E., J. Appl. Phys., 91(11), 8919 (2002)Google Scholar
2 Packan, P. A., MRS Bulletin, 25(6), 18 (2000)Google Scholar
3 Agarwal, A., IEEE Ion Implantation Technology Symposium, Austria, 2000, pp293 Google Scholar
4 Jain, Amitabh in Silicon Front-End Junction Formation—Physics and Technology, edited by Pichler, Peter, Claverie, Alain, Lindsay, Richard, Orlowski, Marius, Windl, Wolfgang, (Mater. Res. Soc. Symp. Proc. 810, Pittsburgh, PA, 2004) pp C5.6 Google Scholar
5 Lindsay, R., Pawlak, B., Kittl, J., Henson, K., Torregiani, C., Giangrandi, S., Surdeanu, R., Vandervorst, W., Mayur, A., Ross, J., McCoy, S., Gelpey, J., Elliott, K., Pages, X., Satta, A., Lauwers, A., Stolk, P., Maex, K. in CMOS Front-end materials and Process Technology, edited by King, Tsu-Jae, Yu, Bin, Lander, Robert J. P., Saito, Shuichi, (Mater. Res. Soc. Symp. Proc. 765, Pittsburgh, PA, 2003) pp D7.4 Google Scholar
6 Borland, J. O. in Si Front-end Junction Formation Technology, edited by Downey, Daniel F., Law, Mark. E., Claverie, Alain, Rendon, Michael, (Mater. Res. Soc. Symp. Proc. 717, Pittsburgh, PA, 2002) pp C1 Google Scholar
7 Lindsay, R., Pawlak, B. J., Stolk, P., Maex, K. in Si Front-end Junction Formation Technology, edited by Downey, Daniel F., Law, Mark. E., Claverie, Alain, Rendon, Michael, (Mater. Res. Soc. Symp. Proc. 717, Pittsburgh, PA, 2002) pp C2.1 Google Scholar
8 Vengurlekar, A., Ashok, S.#, Kalnas, C. E. and Theodore, N. D., Appl. Phys. Lett. 85, 4052 (2004)Google Scholar
9 Nazarov, A. N., Pinchuk, V. M., Lysenko, V. S., Yanchuk, T. V., Ashok, S., Phys. Rev. B., 58(7), 3522 (1998)Google Scholar
10 Yamashita, Y., Jyobe, F., Kamiura, Y., Maeda, K., Mat. Sci. Forum, 258-263(1), 313 (1997)Google Scholar
11 Shao, L., Liu, J. R., Thompson, P. E., Wang, X. M., Rusakova, I., Chen, H., Chu, W.–K., Electrochem. Solid-State Lett., 5, G93 (2002)Google Scholar
12 Privitera, V., Napolitani, E., Priolo, F., Mannino, G., Settanni, C., Camalleri, M., Rimini, E., IEEE Ion Implantation Technology Symposium, Austria, 2000, pp58 Google Scholar
13 Schroer, E., Privitera, V., Priolo, F., Napolitani, E., Carnera, A., Moffat, S., Mat. Sci. & Engg. B, 71 219 (2000)Google Scholar
14 Barakel, D. and Martinuzzi, S., Hydrogen in Semiconductors, edited by Nickel, Norbert H., McCluskey, Matthew D., Zhang, Shenbai, (Mater. Res. Soc. Symp. Proc. 813 Pittsburgh, PA, 2004) pp [H7.3C.Google Scholar
15 Sah, T., Sun, J. Y.-C., Tzou, J. J.-T., J. Appl. Phys., 54, 944, (1983)Google Scholar
16 Stavola, M., Pearton, S. J., Lopata, J., Dautremont-Smith, W. C., Phys. Rev. B, 37, 8313, (1988)Google Scholar
17 Collart, E. J. H., Weemers, K., Cowern, N. E. B., Politiek, J., Bancken, P. H. L., Berkum, J. G. M. van, Gravesteijn, D. J., Nucl. Instr. Meth. Phys. Res. B., 139, 98 (1998)Google Scholar