Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T13:30:02.775Z Has data issue: false hasContentIssue false

Mechanism Of Defect Reactions In Semiconductors

Published online by Cambridge University Press:  15 February 2011

Yuzo Shinozuka*
Affiliation:
Department of Applied Science, Faculty of Engineering, Yamaguchi University Tokiwadai 2557, Ube 755, Japanyuzo@butsuri.yamaguchi-u.ac.jp
Get access

Abstract

An overview is presented on mechanisms of electronically induced (enhanced) defect reactions in semiconductors, which are classified into the local heating, the structural instability, and the recombination enhanced. A mechanism for the annihilation of a hydrogen-carbon complex in silicon is given as an example of the second one. The last two mechanisms can be treated in a unified scheme by using the correct configuration coordinate diagram, which enable us to treat correctly the correlation in successive captures of an electron and a hole. The energy conversion mechanism during the reaction is precisely discussed paying attention to the relation between the lattice relaxation mode and the symmetry breaking reaction coordinate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shinozuka, Y., Proc. 19th Taniguchi Symposium(Springer, 1996) ed. by Nasu, K., in press.Google Scholar
2. Ueda, O., Reliability and degradation of llI-V optical devices (Artech House Publishers, Boston-London) 1996.Google Scholar
3. Bourgoin, J. C. and Corbett, J. M., Phys. Lett. 38A, 135 (1972), and Radiation Effects 36, 157 (1978).Google Scholar
4. Sheinkman, M. K., JETP Lett. 38, 330 (1983), and M. K. Sheinkman and L. C. Kimerling, Defect Control in Semiconductors, ed. K. Sumino (North-Holland, 1990) p. 97.Google Scholar
5. Weeks, J. D.,Tully, J. C., and Kimerling, L. C., Phys. Rev. B 12, 3286 (1975).Google Scholar
6. Sumi, H., Phys. Rev. B 29, 4616 (1985), J. Phys. C17, 6071 (1984).Google Scholar
7. Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 61, 873 (1988), Phys. Rev. B39, 10063 (1989).Google Scholar
8. Saito, M.,Oshiyama, A., and Sugino, O., Phys. Rev. B 47, 13205 (1993).Google Scholar
9. Lang, D. V. and Logan, R. A., Phys. Rev. Lett. 39, 635 (1977).Google Scholar
10. Dabrowski, J. and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar
11. Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 60, 2187 (1988).Google Scholar
12. Brower, K. L., Phys. Rev. B 26, 6040 (1982).Google Scholar
13. Murakami, K.,Kuribayashi, H., and Masuda, K., Phys. Rev. B 38, 1589 (1988).Google Scholar
14. Shinozuka, Y., Materials Science Forum 83–87, 527 (1992).Google Scholar
15. Matsumura, T.,Katayama-Yoshida, H., and Orita, N., Proc, of MRS Symposium (Amorphous Silicon Technology '95) 377, 275 (1995); N. Orita and H. Katayama-Yoshida, J. Non- Crystalline Solids 198–200, 347 (1996).Google Scholar
16. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
17. Kamiura, Y., Tsutsune, M., Hayashi, M., Yamashita, Y., and Hashimoto, F., Materials Science Forum 196–201, 903 (1995).Google Scholar
18. Shinozuka, Y.,J. Phys. Soc. Jpn. 51, 2852 (1982); Jpn. J. Appl. Phys. 32, 4560 (1993).Google Scholar
19. Dexter, D. L.,Klick, C. C., and Russel, G. A., Phys. Rev. 100, 603 (1956).Google Scholar