Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T00:26:12.124Z Has data issue: false hasContentIssue false

Mechanism of Achieving Nanocrystalline AIRu By Ball Milling

Published online by Cambridge University Press:  21 February 2011

E. Hellstern
Affiliation:
Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125, USA
H. J. Fecht
Affiliation:
Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125, USA
C. Garland
Affiliation:
Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125, USA
W. L. Johnson
Affiliation:
Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125, USA
W. M. Keck
Affiliation:
Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125, USA
Get access

Abstract

We investigated through X- ray diffraction and transmission electron microscopy the crystal refinement of the intermetallic compound AIRu by high- energy ball milling. The deformation process causes a decrease of crystal size to 5–7 rum and an increase of atomic level strain. This deformation is localized in shear bands with a thickness of 0.5 to 1 micron. Within these bands the crystal lattice breaks into small grains with a typical size of 8–14 rum. Further deformation leads to a final nanocrystalline structure with randomly oriented crystallite grains separated by high- angle grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H. and Marquardt, P., Z. Metall. 75, 263 (1984). R. Birringer, H. Gleiter, H.- P. Klein, and P. Marquardt, Phys. Lett. A 102, 365 (1984). H. E. Schaefer, R. Würschum, R. Birringer, and H. Gleiter, J. Less- Comm. Met. 140, 161 (1988).Google Scholar
2. Hellstem, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. (Jan. 89), in print.Google Scholar
3. Benjamin, J. S., Sci. Amer. 234, 40 (1976).CrossRefGoogle Scholar
4. Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
5. Ermakov, A. E., Yurchikov, E. E., and Barinov, V. A., Fiz. Metal. Metalloved. 52, 1184 (1981).Google Scholar
6. Hellstem, E., Fecht, H. J., and Johnson, W. L., unpublished.Google Scholar
7. Cottrell, A. H., in “Dislocations and plastic flow in crystals”, (Caledron Press, Oxford, 1972), p. 162.Google Scholar
8. Hatherly, M. and Malin, A. S., Scr. Metall. 18, 449 (1984).CrossRefGoogle Scholar
9. Clifton, R. J., Duffy, J., Hartley, K. A., and Shawki, T. G., Scr. Metall. 18, 443 (1984).CrossRefGoogle Scholar
10. Rigney, D. A., Chen, L. H., Naylor, M. G. S., and Rosenfield, A. R., Wear 100, 195 (1984).CrossRefGoogle Scholar
11. Essmann, U. and Mughrabi, H., Phil. Mag. A 40, 731 (1979).CrossRefGoogle Scholar
12. Darken, L. S., Trans. ASM 54, 599 (1961).Google Scholar
13. Rigney, D. A., Ann. Rev. Mater. Sci. 18, 141 (1988).CrossRefGoogle Scholar
14. Donovan, P. E. and Stobbs, W. M., Acta metall 31, 1 (1983).CrossRefGoogle Scholar
15. Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar