Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T09:07:41.975Z Has data issue: false hasContentIssue false

Mechanism for the magnetoresistance of Pure Bulk Ferromagnets and Composite Thin Film Structures

Published online by Cambridge University Press:  03 September 2012

Mary Beth Stearns*
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, 85287
Get access

Abstract

A unified explanation is given of the long-standing question of the origin of the low-field magnetoresistance, MR, behavior in pure ferromagnetics and the large magnetoresistance effects seen in magnetic layered and granular structures. It is shown that the main contributions to these effects are due to the scattering that occurs at the magnetic boundaries between non-aligned magnetic regions. This scattering occurs because the predominant conduction electrons in 3d ferromagnetics are the highly polarized itinerant d electrons. As a result of this polarization the Majority-band d electrons are strongly reflected at an antiparallel magnetic boundary due to a lack of available states for occupancy. The traversing electrons are further scattered as they cross the boundary due to a discontinuity in the potential caused by the interchange of their kinetic and exchange energies at the boundary. Expressions for the magnetoresistance due to these scattering mechanisms are derived and shown to describe very well the wide variety of magnetoresistance values and other features found in the literature for both pure Fe and nano-structures of Fe or Co with non-Magnetic Materials. The MR Magnitude is seen to vary inversely with the domain size. Thus the domain size and sample purity are seen to be the main factors that determine the magnitude of the MR effect in pure ferromagnets. The large MR values seen in layered and granular magnetic structures arise from the small effective domain size attainable in these structures. This is achieved by introducing a non-Magnetic Material into these structures which allows the effective domain size to be decreased from the micron range of the pure ferromagnetic elements into the nanometer range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reed, W.A. and Fawcett, E., Phys. Rev. 136, A422 (1964); Proceedings of the International Conference on Magnetism, Nottingham, 1964 (The Institute of Physics and The Physical Society, London, 1965), p. 120.Google Scholar
2. Isin, A. and Coleman, R. V., Phys. Rev. 142, 372 (1966):Google Scholar
Coleman, R.V. and Isin, A., J. Appl. Phys, 37, 1028 (1966);Google Scholar
Shumate, P.W. Jr, Coleman, R.V. and Fivaz, R.C., Phys. Rev. Bl, 394 (1970).Google Scholar
3. Sudovtsov, A.M. and Semenenko, E.E., Eksperin, Z.. i Teor. Fiz. 35, 305 (1958); 47, 486 (1964) ;. [English transi.: Soviet Phys.-JETP 8, 211 (1958); 20, 323 (1965)].Google Scholar
4. Schindler, A. and La Roy, B.C., J. Appl. Phys. 37, 3610 (1966).Google Scholar
5. Dheer, P.N., Phys. Rev. 156, 637 (1967).Google Scholar
6. Majumbar, A.K. and Berger, L., Phys. Rev. B 7, 4203 (1973).Google Scholar
7. Baibich, M.N., Broto, M.M., Fert, A., Dau, Nguyen Van, Petroff, F., Etienne, P., Creuzet, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988);Google Scholar
Barthélé, A., Creuzet, G., J. Appl. Phys. 67, 5908 (1990).Google Scholar
8. Binasen, G., Grünberg, P., Saurenbach, F. and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
9. Kieny, B., Speriosu, V.S., Metin, S., Parkin, S.S.P., Gurney, B.A., Baumgart, P. and Wilhoit, D.R., J. Appl. Phys, 69 (8), 4774 (1991).Google Scholar
10. Parkin, S.S.P., More, N. and Roche, K.P., Phys. Rev. Lett., 64, 2304 (1990).Google Scholar
11. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M.B. and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986);Google Scholar
Grünberg, P., Demokritov, S., Fuss, A., Vohl, M., and Wolf, J.A., J. Appl. Phys, 69 (8), 4789 (1991);Google Scholar
Demokritov, S., Wolf, J.A., and Grünberg, P., submitted to Europhysics Letters.Google Scholar
12. Berkowitz, A.E., Mitchell, J:.R., Carey, M.J., Young, A.P., Zhang, S., Spada, F.E., Parker, F.T., Hutten, A. and Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
13. Xiao, J.Q., Jiang, J. S. and Chien, C.L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
14. Barnard, J.A., Waknis, A., Tan, M., Haftek, E., Parder, M.R. and Watson, M.L., Jour. Magn and Magn. Matls., 114, 204 (1992).Google Scholar
15. Steams, M.B. and Cheng, Y., APS March Meeting 1993, Seattle, WA; MRS Spring 1993 Meeting, San Francisco, CA.Google Scholar
16. Camley, R.E. and Bamas, J., Phys. Rev. Lett. 63, 664 (1989).Google Scholar
17. Levy, P.M., Ounadjela, K., Zhang, S., Wang, Y., Sommers, C.B. and Fert, A., J. Appl. Phys. 67 (9), 5914 (1990).Google Scholar
18. Steams, M.B., J. Appl. Phys. 72, 5354 (1992).Google Scholar
19. Cabrera, G.G. and Falicov, L.M., Phys. Stat. Sol. 61 (b), 539 (1974).Google Scholar
20. Steams, M.B., Internat. Conf. on Magnetism, Edinburgh, Scotland, September, 1991; J. Magn. and Magn. Matls. 104–107, 1745 (1992) and Internat. Workshop on Spin-Valve Layered Structures, Madrid, Spain, September, 1991.Google Scholar
21. Steams, M.B., Phys. Rev. B6, 3326 (1972); B8, 4383 (1973); B13, 1183 (1976).Google Scholar
22. Duff, K.J. and Das, T.P., Phys. Rev. B 3, 192 (1971);Google Scholar
Tawil, R.A. and Callaway, J., Phys. Rev. B 7, 4242 (1973);Google Scholar
Papaconstantopoulos, D.A., “Band Structure of Elemental Solids”, Plenum Press, New York, 1986.Google Scholar
23. Tedrow, P.M. and Meservey, R., Phys. Rev. Lett. 26, 191 (1971); Phys. Rev. B 7, 318 (1973),Google Scholar
Meservey, R., Paraskevopoulos, D. and Tedrow, P.M., Phys. Rev. Lett. 37, 858 (1976);Google Scholar
Meservey, R., Tedrow, P.M. and Moodera, J.S., J. Magn. Magn. Mater. 35, 1 (1983). The spin polarization value of -0.22 for the tunneling electrons from Ni found in later work is significantly different from the earlier value of 0.11. This difference was attributed by the authors as due to the ferromagnetism at the Ni surface being degraded from OH ions in the earlier experiments.Google Scholar
24. Steams, M.B., Jour. Magn and Magn. Mails., 5, 167 (1977).Google Scholar
25. Hood, R.Q. and Falicov, L.M., Phys. Rev B 46 8287 (1992).Google Scholar
26. Dorleijn, J.W.F. and Miedema, A.R., AIP Proc. 34, 50 (1976); J. Phys. F: Metal Phys. 5, 487 (1975); Philips Res. Rep. 31 287 (1976);Google Scholar
Campbell, I.A. and Fert, A., Ferromagnetic Materials,, edited by Wohlfarth, E.P. (North-Holland, Amsterdam, 1982) Vol. 111, p. 747.Google Scholar
27 For a discussion of the evaluation of these quantities see Steams, M.B., p. 24 (Landolt and Bornstein, New Series, III/19a, Springer-Verlag, New York, Ed. by Wijn, H.P.J., 1986)Google Scholar
28. Kittel, C. and Galt, J.F., Solid State Phys. Vol. 3, 437 (1956).Google Scholar
29. Mezey, L.Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).Google Scholar