Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T11:28:40.147Z Has data issue: false hasContentIssue false

The Mechanism and Modeling of Conductivity in Polymer Electrolytes

Published online by Cambridge University Press:  16 February 2011

Duward F. Shriver
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Il 60208-3113
Mark A. Ratner
Affiliation:
Department of Chemistry and Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Il 60208-3113
Get access

Abstract

The progress of dynamically disordered hopping (DDH) in modelling charge transport in polymer electrolytes is reviewed. The DDH model successfully describes many of the salient features of polymer electrolytes, most notably, the frequency and temperature dependence of the conductivity. Furthermore, analyses and simulations based on the DDH model provide rich mechanistic information. The general picture of charge transport that emerges from the DDH model is one in which two classes of charge carriers exist in thermal equilibrium:quasi-free and bound. The quasi-free carriers dominate the conductivity response and diffuse freely over short distances (≈1Å) with longer range diffusion requiringlocal segmental motions, renewal in the language of DDH, of the polymer solvent. The bound carriers, which are likely polymer solvated ion clusters, are immobile on the time-scale of renewal and contribute relatively little to the conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) For a review of polymer electrolytes see ref 2-5.Google Scholar
2) MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews 1; Elsevier: London, 1987.Google Scholar
3) Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88, 109124.Google Scholar
4) MacCallum, J. R.; Vincent, C. A. Polymer Electrolyte Reviews 2; Elsevier: London, 1989.Google Scholar
5) Gray, F. M. Solid Polymer Electrolytes; VCH: New York, 1991.Google Scholar
6) Angell, C. A. Solid State Ionics 1983, 9/10, 3.Google Scholar
7) Angell, C. A. Solid State Ionics 1986, 18 & 19, 7288.Google Scholar
8) Druger, S. D.; Nitzan, A.; Ratner, M. A. J. Chem. Phys. 1983, 79, 3133.Google Scholar
9) Druger, S. D.; Ratner, M. A.; Nitzan, A. Solid State Ionics 1983, 9 & 10, 11151120.Google Scholar
10) Druger, S. D.; Ratner, M. A.; Nitzan, A. Phys. Rev. B 1985, 31, 39393947.Google Scholar
11) Druger, S. D.; Ratner, M. A.; Nitzan, A. Solid State Ionics 1986, 18&19, 106111.Google Scholar
12) Druger, S. D.; Ratner, M. A. Phys. Rev. B 1988, 38, 1258912599.Google Scholar
13) Druger, S. D. J. Chem. Phys. 1991, 95, 21692177.Google Scholar
14) Druger, S. D. J. Chem. Phys. 1994, 100, 39793984.Google Scholar
15) Lonergan, M. C.; Nitzan, A.; Ratner, M. A. J. Mol. Liq. 1994, 60, 269288.Google Scholar
16) Lonergan, M. C.; Nitzan, A.; Ratner, M. A.; Shriver, D. F. J. Chem. Phys., submitted.Google Scholar
17) Lonergan, M. C. Ion Transport in Polymer Electrolytes; Ph.D. Thesis; Northwestern University, 1994 Google Scholar
18) Lonergan, M. C.; Shriver, D. F.; Ratner, M. A. Proceedings of the 4th Int. Symp. on Polymer Electrolytes, Electrochim. Acta 1994, in press.Google Scholar
19) Ratner, M. A.; Nitzan, A. Discuss. Faraday Soc. 1989, 88, 1942.Google Scholar
20) Ratner, M. A.; Nitzan, A. Solid State Ionics 1988, 28-30, 333.Google Scholar
21) Nitzan, A.; Ratner, M. A. J. Phys. Chem. 1994, 98, 1765.Google Scholar
22) Granek, R.; Nitzan, A. J. Chem. Phys. 1989, 90, 3784.Google Scholar
23) Granek, R.; Nitzan, A.; Druger, S. D.; Ratner, M. A. Solid State Ionics 1988, 28/30, 120.Google Scholar
24) Vogel, H. Phys. Z. 1921, 22, 645.Google Scholar
25) Tammann, V. G.; Hesse, W. Anorg. Allg. Chem. 1926, 156, 245.Google Scholar
26) Fulcher, G. S. J. Am. Ceram. Soc. 1925, 8, 339.Google Scholar
27) Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31, 11641169.Google Scholar
28) Cohen, M. H.; Grest, G. S. Phys. Rev. B 1980, B21, 4113.Google Scholar
29) Gibbs, J. H.; DiMarzio, E. A. J. Chem. Phys. 1958, 28, 373383.Google Scholar
30) Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.Google Scholar
31) Angell, C. A.; Sichina, W. Ann. New York Acad. Sci. 1976, 279, 5367.Google Scholar
32) Recent Monte-Carlo and mean-field studies have shown that the segmental relaxation processes in the polymer host, that couple strongly and determine the renewal time, go over, in the limit of a small-molecule solvent, to the inertial relaxation time.33,34 It is this latter time that is measured by time-dependent Stokes shift studies of chromophores in solution, and shows characteristic magnitudes of 100fsec or less35-37 Google Scholar
33) Olender, R.; Nitzan, A. J. Chem. Phys. 1994, 100, 705718.Google Scholar
34) Olender, R.; Nitzan, A. J. Chem. Phys. 1994, 101, 23382394.Google Scholar
35) Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990, 15, 1.Google Scholar
36) Kosower, E. M.; Huppert, D. Annu. Rev. Phys. Chem. 1986, 37, 127.Google Scholar
37) Maroncelli, M.; Fee, R. S.; Chapman, F.; Fleming, G. R. J. Phys. Chem. 1991, 95, 1012.Google Scholar
38) Wintersgill, M. C.; Fontanella, J. J. in Polymer Electrolyte Reviews 2; MacCallum, J. R. and Vincent, C. A., Ed.; Elsevier: London, 1989, pp 4357.Google Scholar
39) Fontanella, J. J.; Wintersgill, M. C.; Calame, J. P.; Smith, M. K.; Andeen, C. G. Solid State Ionics 1986, 18&19, 253257.Google Scholar
40) Tipton, A. L.; Lonergan, M. C.; Ratner, M. A.; Shriver, D. F.; Wong, T. T. Y., ; Han, K. J. Phys. Chem. 1994, 98, 41484154.Google Scholar
41) With eq 7 for g(t), the renewal limited regime corresponds to ζ>λ in that eq 6 is recovered. In the case where ζ<<λ, however, eq 7 yields D =g(∞)ζ/ 6. Hence, the parameter ζ is related to the intrinsic particle mobility. Thereby, ζ defines the maximum diffusivity obtainable and is related to the so-called IR conductivity.7 The limit ζl<<λmay be considered a decoupled regime where the diffusivity of particles does not depend on the dynamics of the media through which it diffuses. In contrast to decoupled, ionically conducting glasses7where host motion is very slow and the materials are presumably above their percolation thresholds for ion diffusion, eq 7 in the limit ζ<<λ characterizes a system below its static percolation threshold in the limit of very fast host renewal.λ+in+that+eq+6+is+recovered.+In+the+case+where+ζ<<λ,+however,+eq+7+yields+D+=g(∞)ζ/+6.+Hence,+the+parameter+ζ+is+related+to+the+intrinsic+particle+mobility.+Thereby,+ζ+defines+the+maximum+diffusivity+obtainable+and+is+related+to+the+so-called+IR+conductivity.7+The+limit+ζl<<λmay+be+considered+a+decoupled+regime+where+the+diffusivity+of+particles+does+not+depend+on+the+dynamics+of+the+media+through+which+it+diffuses.+In+contrast+to+decoupled,+ionically+conducting+glasses7where+host+motion+is+very+slow+and+the+materials+are+presumably+above+their+percolation+thresholds+for+ion+diffusion,+eq+7+in+the+limit+ζ<<λ+characterizes+a+system+below+its+static+percolation+threshold+in+the+limit+of+very+fast+host+renewal.>Google Scholar
42) For a review of dielectric relaxation in high polymers see references 43-45.Google Scholar
43) McCrum, N. G.; Read, B. E.; Williams, G. Anelastic and dielectric effects in polymeric solids; John Wiley: London, 1967.Google Scholar
44) Ishida, Y. J. Polym. Sci., Part A-2 1969, 7, 18351861.Google Scholar
45) Jonscher, A. K. Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, 1983.Google Scholar
46) Fu, Y.; Pathmanathan, K.; Stevens, J. R. J. Chem. Phys. 1991, 94, 63236329.Google Scholar
47) Gray, F. M.; Vincent, C. A.; Kent, M. J. Polym. Sci., Polym. Phys. Ed. 1989, 27, 2011.Google Scholar
48) James, D. B.; Wetton, R. E.; Brown, D. S. Polymer 1979, 20, 187195.Google Scholar
49) Torell, L. M.; Jacobsson, P.; Sidebottom, D.; Petersen, G. Solid State Ionics 1992, 53-56, 10371043.Google Scholar
50) Lemmon, J. P.; Kohnert, R. L.; Lerner, M. M. Macromolecules 1993, 26, 2767.Google Scholar
51) Havriliak, S.; Negami, S. J. Polym. Sci., Part C. 1966, 14, 99117.Google Scholar
52) Connor, T. M.; Read, B. E.; Williams, G. J. Appl. Phys. 1964, 14, 7481.Google Scholar
53) Porter, C. H.; Boyd, R. H. Macromolecules 1971,4, 589594.Google Scholar
54) Yano, S.; Rahalkar, R. R.; Hunter, S. P.; Wang, C. H.; Boyd, R. H. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 18771890.Google Scholar
55) Technically, the dc conduction term only contributes to Σ”, and therefore, does not hamper the interrogation of Σ'. Dielectric measurements, however, are typically performed with ion-blocking electrodes. As a result, the mobility of ions gives rise to a space charge polarization that dominates the low frequency Σ'.Google Scholar
56) Lonergan, M. C.; Shriver, D. F.; Ratner, M. A., manuscript in preparation.Google Scholar
57) Papke, B. L.; Dupon, R.; Ratner, M. A.; Shriver, D. F. in Fast Ionic Transport in Solids; Bates, J. B. and Farrington, G. C., Ed.; North-Holland: Amsterdam, 1981, pp 685688.Google Scholar
58) Dupon, R.; Papke, B. L.; Ratner, M. A.; Whitmore, D. H.; Shriver, D. F. J. Am. Chem. Soc. 1982, 104, 62476251.Google Scholar
59) Teeters, D.; Frech, R. Solid State Ionics 1986, 18 & 19, 271276.Google Scholar
60) Schantz, S.; Sandahl, J.; Borjesson, L.; Torrel, L. M.; Stevens, J.R Solid State Ionics 1988, 28-30, 10471053.Google Scholar
61) Schantz, S.; Torell, L. M.; Stevens, J. R. J. Appl. Phys. 1988, 64, 20382043.Google Scholar
62) Xu, W. Y.; Smid, J.; VanBeylen, M. Solid State Ionics 1992, 57, 133139.Google Scholar
63) MacCallum, J. R.; Tomlin, A. S.; Vincent, C. A. Eur. Polym. J. 1986, 22, 787791.Google Scholar
64) Gray, F. M. Solid State Ionics 1990, 40/41, 637640.Google Scholar
65) Gray, F. M. J. Polym. Sci., Polym. Phys. Ed. 1991, 29, 14411445.Google Scholar
66) For a discussion of some of these effects see 18 and references therein.Google Scholar
67) Lonergan, M. C.; Perram, J. W.; Ratner, M. A.; Shriver, D. F. J. Chem. Phys. 1993, 98, 4937.Google Scholar
68) Al-Mudaris, A. A.; Chadwick, A. V. Brit. Polym. J. 1988, 20, 213217.Google Scholar
69) Bhattacharja, S.; Smoot, S. W.; Whitmore, D. H. Solid State Ionics 1986, 18-19, 306314.Google Scholar
70) Lindsey, S. E. Ph.D. Thesis; Northwestern University, 1989 Google Scholar
71) Ward, I. M.; Boden, N.; Cruickshank, J.; Leng, S. E. Proc. of the Fourth Int. Symp. on Polymer Electrolytes.Electrochim. Acta 1994, in press.Google Scholar
72) Boden, N.; Leng, S. A.; Ward, I. M. Solid State Ionics 1991, 45, 261270.Google Scholar
73) Vincent, C. A. Proc. of the Fourth Int. Symp. on Polymer Electrolytes, Electrochim. Acta 1994, in press.Google Scholar
74) The aspects that go beyond the simple DDH scheme include clustering and its concentration dependence, ionic motion within clusters, effects of complexing agents and of multiply charged ions; several of these, notably those involving clustering, can be understood using molecular dynamics simulation,75-78 and others, such as charge and chain lengths effects, can be well described by Monte-Carlo lattice models.33,34.Google Scholar
75) Payne, V. A.; Forsyth, M.; Ratner, M. A.; Shriver, D. F.; deLeeuw, S. W. J. Chem. Phys. 1994,100, 52015210.Google Scholar
76) Mills, G. E.; Catlow, C. R. A. J. Chem. Soc., Chem. Commun. 1994, 18, 20372039.Google Scholar
77) Neyertz, S.; Brown, D.; Thomas, J..O J. Chem. Phys., in press.Google Scholar
78) Muller-Plathe, F. Acta Polymer 1994, 45, 259.Google Scholar
79) Blonsky, P. M.; Shriver, D. F. J. Am. Chem. Soc. 1984, 106, 68546855.Google Scholar
80) Smid, J.; Fish, D.; Khan, I. M.; Wu, E.; Zhou, G. Advances in Chemistry Series 1990, 224, 113124.Google Scholar
81) Craven, J. R.; Mobbs, R. H.; Booth, C. Makrom. Chem. Rapid Commun. 1986, 7, 81.Google Scholar
82) Huq, R.; Koksbang, R.; Tonder, P. E.; Farrington, G. C. Electrochim. Acta 1992, 37, 16811684.Google Scholar
83) Munshi, M. Z. A.; Owens, B. B. Solid State Ionics 1988, 26, 41 Google Scholar
84) Cameron, G. G.; Ingram, M. D.; Sarmouk, K. Polym. J. 1990, 26, 10971101.Google Scholar
85) Sheldon, M. H.; Glasse, M. D.; Latham, R. J.; Linford, R. G. Solid State Ionics 1989, 34, 135138.Google Scholar
86) Kaplan, M. L.; Rietman, E. A.; Cava, R. J.; Holt, L. K.; Chandross, E. A. Solid State Ionics 1987, 25, 37.Google Scholar
87) Chen, K.; Ganapathiappan, S.; Shriver, D. F. Chem. Mater. 1989, 1, 483.Google Scholar
88) Chen, K.; Shriver, D. F. Chem. Mater. 1991, 3.Google Scholar
89) Zhou, G.; Khan, I. M.; Smid, J. Macromolecules 1993, 26, 22022208.Google Scholar
90) Angell, C. A.; Liu, C.; Sanchez, E. Nature 1993, 362, 137139.Google Scholar