Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T23:38:44.187Z Has data issue: false hasContentIssue false

Mechanical Properties of Superhard Nanocomposites with High Thermal Stability

Published online by Cambridge University Press:  01 February 2011

Stan Veprek*
Affiliation:
Institute for Chemistry of Inorganic Materials, Technical University Munich, Garching b., Munich, Germany
Ali S. Argon
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
*
*) Phone: ‥49–89–2891 3624; Fax: ‥49–89–2891 3626, E-mail: veprek@ch.tum.de
Get access

Extract

Abstract Superhard nanocomposites, nc-MnN/a-XxNy (M = Ti, W, V, Zr, (Al1-xTix)N; X = Si, B) with hardness of 40–100 GPa are prepared by plasma CVD or PVD under a sufficiently high nitrogen activity and deposition temperature that allow the formation of a stable nanostructure by self-organization upon strong thermodynamically driven, spinodal phase segregation. These nanocomposites display an extraordinary combination of a high hardness, high elastic recovery, high resistance against brittle fracture and tensile strength of 5 to 40 GPa approaching the ideal strength of flaw-free materials. These properties can be understood in terms of conventional fracture physics scaled appropriately down to crystallite sizes of few nm. The interfacial monolayer of Si3N4 or BN with strong bonding to the nanocrystallites and high structural flexibility avoids grain boundary sliding. With increasing thickness of this interface the hardness decreases, possibly due to an increase of this “liquid-like” component in which plastic transformation can be triggered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Veprek, S., J. Vac. Sci. Technol. A 17 (1999) 2401.Google Scholar
[2] Veprek, S. and Argon, A. S., J. Vac. Sci. Technol. B 20 (2002) 650.Google Scholar
[3] Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K. and Argon, S., Thin Solid Films 436 (2003) 220.Google Scholar
[4] Veprek, S., Karvankova, P. and Männling, H., MRS Symp. Proc. 697 (2002) 27.Google Scholar
[5] Musil, J., Surf. Coat. Technol. 125 322 (2000).Google Scholar
[6] Veprek, S., Sarott, F.-A. and Igbal, Z., Phys. Rev. B 36 (1987) 3344.Google Scholar
[7] Hultman, L., Vacuum 57 (2000) 1.Google Scholar
[8] Karvánková, P., Männling, H.-D., Eggs, C. and Veprek, S., Surf. Coatings Technol. 146–147 (2001) 280.Google Scholar
[9] Veprek, S. and Reiprich, S., Thin Solid Films 268 (1995) 64.Google Scholar
[10] Männling, H.-D., Patil, D. S., Moto, K., Jilek, M. and Veprek, S., Surf. Coating Technol. 146–147 (2001) 263.Google Scholar
[11] Veprek, S., Männling, H.-D., Jilek, M. and Holubar, P., Mater. Sci. Eng. 2003, in press.Google Scholar
[12] Veprek, S., invited paper at Int. Conf. Metallurgucal Coatings and Thin Films, San Diego, April/May 2003, to be published.Google Scholar
[13] Jilek, M., Holubar, P., Veprek-Heijman, M.G.J. and Veprek, S., Mater. Res. Soc. Symp. Proc. 750 (2003) 393.Google Scholar
[14] Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M. G. J. and Veprek, Stan, Plasma Chem. Plasma Processing (2003/2004) submitted.Google Scholar
[15] Veprek, S., Haussmann, M. and Reiprich, S., J. Vac. Sci. Technol. 14 (1996) 46.Google Scholar
[16] Veprek, S., Niederhofer, A., Moto, K., Nesladek, P., Männling, H. and Bolom, T., Mater. Res. Soc. Symp. Proc. 581 (2000) 321.Google Scholar
[17] Argon, A. S. and Veprek, S., Proc. 22nd Riso Int. Symp. on Materials Science: Science of Metastable and Nanocrystalline Alloys, Structure, Properties and Modeling. Eds. Dine-sen, A. R., Eldrup, M., Juul Jensen, D. et al., Riso Nat. Laboratory, Roskilde, Denmark 2001 p. 183.Google Scholar
[18] Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Moto, K., Pro-chazka, J. and Argon, A. S., J. Vac. Sci. Technol., A 21 (2003) 532.Google Scholar
[19] Prochazka, J., Karvankova, P., Veprek-Heijman, M.G.J. and Veprek, S., Thin Solid Films, submitted.Google Scholar
[20] Veprek, S., Niederhofer, A., Nesladek, P. and Glatz, F., Electrochem. Soc. Proc. 97–25 (1997) 317 Google Scholar
[21] Shizhi, Li, Yulong, Shi and Hongrui, Peng Plasma Chem. Plasma Process. 12 (1992) 287.Google Scholar
[22] Diserens, M., Patscheider, J. and Lévy, F., Surf. Coat. Technol. 108–109 (1998) 241; 120–121 (1999) 158.Google Scholar
[23] Vaz, F., Rebouta, L., Ramos, S., da Silva, M. F. and Soares, J. C., Surf. Coat. Technol. 198–109 (1998) 236.Google Scholar
[24] Vaz, F., Rebouta, L., Godeau, P., Pacaud, J., Garem, H., Riviere, J. P., Cavaleiro, A. and Alves, E., Surf. Coat. Technol. 133–134 (2000) 307.Google Scholar
[25] Niederhofer, A., Bolom, T., Nesladek, P., Moto, K., Eggs, C., Patil, D. S. and Veprek, S., Surf. Coating Technol. 146–147 (2001) 183.Google Scholar
[26] Karvankova, P., Veprek-Heijman, M. G. J., Zindulka, O. and Veprek, S., Surf. Coatings Technol. 163–164 (2002) 149.Google Scholar
[27] Karvankova, P., Veprek-Heijman, M. G. J., Azionoc, D. and Veprek, S., manuscript in preparation.Google Scholar
[28] Hu, X., Han, Z., Li, G. and Gu, M., J. Vac. Sci. Technol. A 20 (2002) 1921.Google Scholar
[29] Meng, W.J., Zhang, X. D., Shi, B., Tittsworth, R. C., Rehn, L. E. and Baldo, P. M., J. Mater. Res. 17 (2002) 2628.Google Scholar
[30] Annonymous referees of our recent papers e.g. [18].Google Scholar
[31] Musil, J., Zeman, H., Kunc, F., Vlcek, J., Mater. Sci. Eng. A 340 (2003) 281.Google Scholar
[32] Veprek, S., Mukherjee, S., Männling, H.-D. and He, J., Mater. Sci. Eng. A 340 (2003) 292.Google Scholar
[33] Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Xu, J., Prochazka, J., Argon, A. S., Li, A. S., Fang, Q. F., Li Qingdao, S. Z., Manghnani, M. H., Tkachev, S. and Zinin, P., Mater. Res. Soc. Symp. Proc. 697 (2003) 9.Google Scholar
[34] Veprek, S., Männling, H.-D., Niederhofer, A., Ma, D. and Mukherjee, S., J. Vac. Sci. Technol. submitted (2003)Google Scholar
[35] Tabor, G., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
[36] Veprek, S., Mukherjee, S., Karvankova, P., Männling, H.-D., He, J. L., Xu, J., Prochazka, J., Argon, A. S., Li, A. S., Fang, Q. F., Li, S. Z., Manghnani, M. H., Tkachev, S., Zinin, P., Prilliman, S. G., Zaziski, D. J., Clark, S. M., Alivisatos, A. P. and Strunk, H. P., Mater. Sci. Eng. (2003) submittedGoogle Scholar
[37] Demkowicz, M. and Argon, A.S., Phys. Rev. Lett., (2003/2004) submitted.Google Scholar