Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-10T19:32:18.204Z Has data issue: false hasContentIssue false

Measurements of Enhanced Oxygen Diffusion in Silicon During Thermal Donor Formation: New Evidence for Possible Mechanisms

Published online by Cambridge University Press:  25 February 2011

A.R. Brown
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Prince Consort Road, London, SW7 2BZ, U.K.
R. Murray
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Prince Consort Road, London, SW7 2BZ, U.K.
R.C. Newman
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Prince Consort Road, London, SW7 2BZ, U.K.
J.H. Tucker
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, The Blackett Laboratory, Imperial College of Science, Prince Consort Road, London, SW7 2BZ, U.K.
Get access

Abstract

Czochralski silicon has been heated in a H-plasma at temperatures in the range 300-450°C, and compared with furnace annealed material. Plasma treatments produce enhanced rates of oxygen diffusion jumps, loss of oxygen from solution and formation of thermal donor centres. The available evidence indicates that atomic hydrogen catalyses the enhancements via the oxygen diffusion rate. Donor concentrations greater than 1017cm-3 have been observed in samples heated in a plasma at 350°C. Doubts have been raised about dimer formation being the primary mechanism for oxygen loss in furnace anneals at 350°C, but invoking enhanced diffusion leads to a conflict with stress dichroism data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Oeder, R. and Wagner, P., in Defects in Semicond II, edited by Mahajan, S. and Corbett, J.W. (North Holland, New York, 1983) p. 71.Google Scholar
2 Lee, K.M., Trombetta, J.M. and Watkins, G.D., Proc. Mater Res, Symp. 46, 263 (1986).Google Scholar
3 Michel, J., Heilwes, N., Niklas, J.R and Spaeth, J-M., Inst. Phys. Conf. Ser. 95, 201 (1989).Google Scholar
4 Gregorkiewicz, T., Bekman, H.H.P. Th. and Ammerlaan, C.A.J., Acta Physica Polonica, A75, 89 (1989).Google Scholar
5 Helmreich, D. and Sirtl, E., Semicond Silicon Mat. Res. and Devices, edited by Huff, H.R. and Sirtl, E. (Electrochem Soc: New York: 1977) p. 626.Google Scholar
6 Tan, T.Y., Kleinhenz, R. and Schneider, C.P., Proc. Mater. Res. Soc. Symp. 59, 195 (1986).Google Scholar
7 Ourmazd, A., Schroter, W. and Bourret, A., J.Appl. Phys. 56, 1670 (1984).Google Scholar
8 Markevich, V.P., Makarenko, L.F. and Murin, L.I., Phys. Stat. Sol., (a) 97, K173, (1986).Google Scholar
9 Watkins, G.D. and Corbett, J.W., Phys. Rev., 121, 1001 (1961).Google Scholar
10 Stavola, M., Patel, J.R., Kimerling, L.C. and Freeland, P.E., Appl. Phys. Lett., 42, 73 (1983).Google Scholar
11 Tipping, A.K., Newman, R.C., Newton, D.C. and Tucker, J.H., Defects in Semicond., edited by von Bardeleben, H.J., Mat. Sci. Forum 10–12, 887 (1986).Google Scholar
12 Newman, R.C. and Claybourn, M., Inst. Phys. Conf. Ser. 95, 211, (1989).Google Scholar
13 Oates, A.S. and Newman, R.C., Appl. Phys. Lett. 49, 262 (1986).Google Scholar
14 Gosele, U. and Tan, H.Y., Appl. Phys. A28, 79 (1982).Google Scholar
15 Brown, A.R., Claybourn, M., Murray, R., Nandhra, P.S., Newman, R.C. and Tucker, J.H., Semicond. Sci. and Technol. 3, 591 (1988).Google Scholar
16 Murray, R., Brown, A.R. and Newman, R.C., E-MRS Conf., edited by Ammerlaan, C.A.J., Chantre, A. and Wagner, P., Strasbourg 1989, in the press.Google Scholar
17 Messoloras, S., Newman, R.C., Stewart, R.J., Brown, A.R., Claybourn, M., Murray, R. and Wilkes, J.G., IEE UK IT88 Conf. Swansea 1988, p. 529.Google Scholar
18 Claybourn, M. and Newman, R.C., Appl. Phys. Lett. 52, 2139 (1988).Google Scholar
19 Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids 33, 255 (1972).Google Scholar
20 Ponce, F.A., Johnson, N.M., Tramontana, J.C. and Walker, J., Inst. Phys. Conf. Ser. 87, 49 (1987).Google Scholar
21 Lindstrom, J.L. and Svensson, B.G., Proc. Mater. Res. Soc. Symp. 59, 45 (1986).Google Scholar
22 Stein, H.J. and Hahn, S., Int. Conf. on Defect Control in Semicond, Yokohama, Japan 1989, in the press.Google Scholar
23 Fuller, C.S. and Logan, R.A., J. Appl. Phys. 28, 1427 (1957).Google Scholar
24 Baghdadi, A., Bullis, W.M., Croarkin, M.C., Li, Yue-Zhen, Scace, R.I., Series, R.W., Stallhofer, P., Watanabe, M., J. Electrochem, Soc, 136, 2015 (1989).Google Scholar