Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T09:02:46.733Z Has data issue: false hasContentIssue false

Measurement of the Effective Piezoelectric Constant of Nitride Thin Films and Heterostructures Using Scanning Force Microscopy

Published online by Cambridge University Press:  21 March 2011

B. J. Rodriguez
Affiliation:
Department of Physics1 and Department of Materials Science and Engineering
D-J. Kim
Affiliation:
North Carolina State University, Box 8202, Raleigh, NC, 27695-8202, USA
A. I. Kingon
Affiliation:
North Carolina State University, Box 8202, Raleigh, NC, 27695-8202, USA
R. J. Nemanich
Affiliation:
Department of Physics1 and Department of Materials Science and Engineering
Get access

Abstract

Piezoelectric properties of wurtzite AlN and GaN/AlN are investigated using scanning force microscopy (SFM). The magnitude of the effective longitudinal piezoelectric constant d33 of AlN and GaN/AlN thin films are measured and reported, and the d33 coefficients of these films are verified using an interferometric technique. Simultaneous imaging of the topography, and of the phase and magnitude of the piezoelectric strain is performed. Using a GaN film with patterned polarities, we demonstrate that polarity can be inferred from the phase image of the piezoelectric strain. We report d33=3±1 pm/V for AlN/SiC and 2 1 pm/V for GaN/AlN/SiC. Films grown by organo-metallic vapor phase epitaxy (OMVPE) on SiC, sputtered AlN films and films grown by molecular beam epitaxy (MBE) are characterized and compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).10.1063/1.369664Google Scholar
2. Zoroddu, A., Bernardini, F., Ruggerone, P., Fiorentini, V., Phys. Rev. B 64, 045208 (2001).10.1103/PhysRevB.64.045208Google Scholar
3. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).10.1103/PhysRevB.56.R10024Google Scholar
4. Kholkin, A., Wuetchrich, C., Taylor, D. V., Setter, N., Rev. Sci. Instrum. 67, 1935 (1996).10.1063/1.1147000Google Scholar
5. Birk, H., Glatz-Reichenbach, J., , Li-Jie, Schreck, E., and Dransfield, K., J. Vac. Sci. Technol. B 9, 1162 (1991).10.1116/1.585238Google Scholar
6. , Lie-Jie, Baur, C., Koslowski, B., and Dransfield, K., Physica B 204, 318 (1995).Google Scholar
7. Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A., and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).10.1063/1.115857Google Scholar
8. Gruverman, A., Auciello, O., and Tokumoto, H.. Annu. Rev. Mater. Sci. 28, 101 (1998)10.1146/annurev.matsci.28.1.101Google Scholar
9. Guethner, P. and Dransfield, K., Appl. Phys. Lett. 61, 1137 (1992).10.1063/1.107693Google Scholar
10. Gruverman, A., Auciello, O., and Tokumoto, H., J. Vac. Sci. Technol. B 14, 602 (1996).10.1116/1.589143Google Scholar
11. Gruverman, A., Auciello, O., and Tokumoto, H., Integr. Ferroelectr. 19. 49 (1998).10.1080/10584589808012695Google Scholar
12. Christman, J. A., Kim, S.-H., Maiwa, H., Maria, J.-P., Rodriguez, B. J., Kingon, A. I., and Nemanich, R. J., J. Appl. Phys. 87, 8031 (2000).10.1063/1.373492Google Scholar
13. Christman, J. A., Woolcott, R. Jr, Kingon, A., Nemanich, R. J., Appl. Phys. Lett. 73, 3851.10.1063/1.122914Google Scholar
14. Franke, K., Besold, J., Haessler, W., and Seegebarth, C., Surf. Sci. Lett. 302, L283 (1993).10.1016/0039-6028(94)91089-8Google Scholar
15. Lueng, C. M., Chan, H. L. W., Surya, C., and Choy, C. L., J. Appl. Phys. 88, 5360 (2000).10.1063/1.1317244Google Scholar
16. Guy, I. L., Muensit, S., and Goldys, E. M., Appl. Phys. Lett. 75, 4133 (1999).Google Scholar
17. Niedermann, P., Haenni, W., Blanc, N., Christoph, R., and Burger, J., J. Vac. Sci. Technol. A 14, 1233 (1996).10.1116/1.580273Google Scholar
18. O'Shea, S. J., Atta, R. M., and Welland, M. E., Rev. Sci. Instrum. 66, 2508 (1995).10.1063/1.1145649Google Scholar
19. Kim, D.-J., PhD. Thesis, North Carolina State University, 2001.Google Scholar
20. Dimitrov, R., Tilak, V., Murphy, M., Schaff, W. J., Eastman, L. F., Lima, A. P., Miskys, C., Ambacher, O., and Stutzmann, M., Mat. Sci. Soc. Symp. 622, T4.6.1 (2000).10.1557/PROC-622-T4.6.1Google Scholar
21. Stutzmann, M., Ambacher, O., Eickhoff, M., Karrer, U., Pimenta, A. Lima, Neuberger, R., Schalwig, J., Dimitrov, R., Schuck, P. J., and Grober, R. D. (submitted to Phys. Stat. Sol.).Google Scholar